Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 29;93(22):12478–12483. doi: 10.1073/pnas.93.22.12478

Lipopolysaccharide and interleukin 1 augment the effects of hypoxia and inflammation in human pulmonary arterial tissue.

R Ziesche 1, V Petkov 1, J Williams 1, S M Zakeri 1, W Mosgöller 1, M Knöfler 1, L H Block 1
PMCID: PMC38017  PMID: 8901607

Abstract

The combined effects of hypoxia and interleukin 1, lipopolysaccharide, or tumor necrosis factor alpha on the expression of genes encoding endothelial constitutive and inducible nitric oxide synthases, endothelin 1, interleukin 6, and interleukin 8 were investigated in human primary pulmonary endothelial cells and whole pulmonary artery organoid cultures. Hypoxia decreased the expression of constitutive endothelial nitric oxide synthase (NOS-3) mRNA and NOS-3 protein as compared with normoxic conditions. The inhibition of expression of NOS-3 corresponded with a reduced production of NO. A combination of hypoxia with bacterial lipopolysaccharide, interleukin 1 beta, or tumor necrosis factor alpha augmented both effects. In contrast, the combination of hypoxia and the inflammatory mediators superinduced the expression of endothelin 1, interleukin 6, and interleukin 8. Here, we have shown that inflammatory mediators aggravate the effect of hypoxia on the down-regulation of NOS-3 and increase the expression of proinflammatory cytokines in human pulmonary endothelial cells and whole pulmonary artery organoid cultures.

Full text

PDF
12478

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breitschopf H., Suchanek G., Gould R. M., Colman D. R., Lassmann H. In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain. Acta Neuropathol. 1992;84(6):581–587. doi: 10.1007/BF00227734. [DOI] [PubMed] [Google Scholar]
  2. Bromley L., McCarthy S. P., Stickland J. E., Lewis C. E., McGee J. O. Non-isotopic in situ detection of mRNA for interleukin-4 in archival human tissue. J Immunol Methods. 1994 Jan 3;167(1-2):47–54. doi: 10.1016/0022-1759(94)90073-6. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Giaid A., Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995 Jul 27;333(4):214–221. doi: 10.1056/NEJM199507273330403. [DOI] [PubMed] [Google Scholar]
  5. Giaid A., Yanagisawa M., Langleben D., Michel R. P., Levy R., Shennib H., Kimura S., Masaki T., Duguid W. P., Stewart D. J. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 1993 Jun 17;328(24):1732–1739. doi: 10.1056/NEJM199306173282402. [DOI] [PubMed] [Google Scholar]
  6. Graham L. M., Vasil A., Vasil M. L., Voelkel N. F., Stenmark K. R. Decreased pulmonary vasoreactivity in an animal model of chronic Pseudomonas pneumonia. Am Rev Respir Dis. 1990 Jul;142(1):221–229. doi: 10.1164/ajrccm/142.1.221. [DOI] [PubMed] [Google Scholar]
  7. Holt C. M., Francis S. E., Rogers S., Gadsdon P. A., Taylor T., Clelland C., Soyombo A., Newby A. C., Angelini G. D. Intimal proliferation in an organ culture of human internal mammary artery. Cardiovasc Res. 1992 Dec;26(12):1189–1194. doi: 10.1093/cvr/26.12.1189. [DOI] [PubMed] [Google Scholar]
  8. Jackson C. J., Garbett P. K., Nissen B., Schrieber L. Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium. J Cell Sci. 1990 Jun;96(Pt 2):257–262. doi: 10.1242/jcs.96.2.257. [DOI] [PubMed] [Google Scholar]
  9. Karakurum M., Shreeniwas R., Chen J., Pinsky D., Yan S. D., Anderson M., Sunouchi K., Major J., Hamilton T., Kuwabara K. Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J Clin Invest. 1994 Apr;93(4):1564–1570. doi: 10.1172/JCI117135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kourembanas S., Hannan R. L., Faller D. V. Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest. 1990 Aug;86(2):670–674. doi: 10.1172/JCI114759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kourembanas S., McQuillan L. P., Leung G. K., Faller D. V. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest. 1993 Jul;92(1):99–104. doi: 10.1172/JCI116604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lowenstein C. J., Dinerman J. L., Snyder S. H. Nitric oxide: a physiologic messenger. Ann Intern Med. 1994 Feb 1;120(3):227–237. doi: 10.7326/0003-4819-120-3-199402010-00009. [DOI] [PubMed] [Google Scholar]
  13. MacNaul K. L., Hutchinson N. I. Differential expression of iNOS and cNOS mRNA in human vascular smooth muscle cells and endothelial cells under normal and inflammatory conditions. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1330–1334. doi: 10.1006/bbrc.1993.2398. [DOI] [PubMed] [Google Scholar]
  14. McQuillan L. P., Leung G. K., Marsden P. A., Kostyk S. K., Kourembanas S. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am J Physiol. 1994 Nov;267(5 Pt 2):H1921–H1927. doi: 10.1152/ajpheart.1994.267.5.H1921. [DOI] [PubMed] [Google Scholar]
  15. Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
  16. Rosenkranz-Weiss P., Sessa W. C., Milstien S., Kaufman S., Watson C. A., Pober J. S. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest. 1994 May;93(5):2236–2243. doi: 10.1172/JCI117221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shaul P. W., North A. J., Brannon T. S., Ujiie K., Wells L. B., Nisen P. A., Lowenstein C. J., Snyder S. H., Star R. A. Prolonged in vivo hypoxia enhances nitric oxide synthase type I and type III gene expression in adult rat lung. Am J Respir Cell Mol Biol. 1995 Aug;13(2):167–174. doi: 10.1165/ajrcmb.13.2.7542896. [DOI] [PubMed] [Google Scholar]
  18. Steinberg K. P., Milberg J. A., Martin T. R., Maunder R. J., Cockrill B. A., Hudson L. D. Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994 Jul;150(1):113–122. doi: 10.1164/ajrccm.150.1.8025736. [DOI] [PubMed] [Google Scholar]
  19. Stenmark K. R., Durmowicz A. G., Roby J. D., Mecham R. P., Parks W. C. Persistence of the fetal pattern of tropoelastin gene expression in severe neonatal bovine pulmonary hypertension. J Clin Invest. 1994 Mar;93(3):1234–1242. doi: 10.1172/JCI117077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Su Y., Block E. R. Hypoxia inhibits L-arginine synthesis from L-citrulline in porcine pulmonary artery endothelial cells. Am J Physiol. 1995 Nov;269(5 Pt 1):L581–L587. doi: 10.1152/ajplung.1995.269.5.L581. [DOI] [PubMed] [Google Scholar]
  21. Terashima T., Kanazawa M., Sayama K., Ishizaka A., Urano T., Sakamaki F., Nakamura H., Waki Y., Tasaka S. Granulocyte colony-stimulating factor exacerbates acute lung injury induced by intratracheal endotoxin in guinea pigs. Am J Respir Crit Care Med. 1994 May;149(5):1295–1303. doi: 10.1164/ajrccm.149.5.7513596. [DOI] [PubMed] [Google Scholar]
  22. Tesch J. W., Rehg W. R., Sievers R. E. Microdetermination of nitrates and nitrites in saliva, blood, water, and suspended particulates in air by gas chromatography. J Chromatogr. 1976 Nov 3;126:743–755. doi: 10.1016/s0021-9673(01)84117-0. [DOI] [PubMed] [Google Scholar]
  23. Tuder R. M., Flook B. E., Voelkel N. F. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest. 1995 Apr;95(4):1798–1807. doi: 10.1172/JCI117858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tuder R. M., Groves B., Badesch D. B., Voelkel N. F. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol. 1994 Feb;144(2):275–285. [PMC free article] [PubMed] [Google Scholar]
  25. Yan S. F., Tritto I., Pinsky D., Liao H., Huang J., Fuller G., Brett J., May L., Stern D. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J Biol Chem. 1995 May 12;270(19):11463–11471. doi: 10.1074/jbc.270.19.11463. [DOI] [PubMed] [Google Scholar]
  26. Yoshizumi M., Kurihara H., Morita T., Yamashita T., Oh-hashi Y., Sugiyama T., Takaku F., Yanagisawa M., Masaki T., Yazaki Y. Interleukin 1 increases the production of endothelin-1 by cultured endothelial cells. Biochem Biophys Res Commun. 1990 Jan 15;166(1):324–329. doi: 10.1016/0006-291x(90)91948-r. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES