Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 29;93(22):12643–12647. doi: 10.1073/pnas.93.22.12643

Viral RNA trafficking is inhibited in replicase-mediated resistant transgenic tobacco plants.

L Nguyen 1, W J Lucas 1, B Ding 1, M Zaitlin 1
PMCID: PMC38046  PMID: 8901636

Abstract

Transgenic tobacco (Nicotiana tabacum cv. Turkish Samsun NN) plants expressing a truncated replicase gene sequence from RNA-2 of strain Fny of cucumber mosaic virus (CMV) are resistant to systemic CMV disease. This is due to suppression of virus replication and cell-to-cell movement in the inoculated leaves of these plants. In this study, microinjection protocols were used to directly examine cell-to-cell trafficking of CMV viral RNA in these resistant plants. CMV RNA fluorescently labeled with the nucleotide-specific TOTO-1 iodide dye, when coinjected with unlabeled CMV 3a movement protein (MP), moved rapidly into the surrounding mesophyll cells in mature tobacco leaves of vector control and untransformed plants. Such trafficking required the presence of functional CMV 3a MP. In contrast, coinjection of CMV 3a MP and CMV TOTO-RNA failed to move in transgenic resistant plants expressing the CMV truncated replicase gene. Furthermore, coinjection of 9.4-kDa fluorescein-conjugated dextran (F-dextran) along with unlabeled CMV 3a MP resulted in cell-to-cell movement of the F-dextran in control plants, but not in the transgenic plants. Similar results were obtained with viral RNA when the 30-kDa MP of tobacco mosaic virus (TMV) was coinjected with TMV TOTO-RNA into replicase-resistant transgenic tobacco expressing the 54-kDa gene sequence of TMV. However, in these transgenic plants, the TMV-MP was still capable of mediating cell-to-cell movement of itself and the 9.4-kDa F-dextran. These results indicate that an inhibition of cell-to-cell viral RNA trafficking is correlated with replicase-mediated resistance. This raises the possibility that the RNA-2 product is potentially involved in the regulation of cell-to-cell movement of viral infectious material during CMV replication.

Full text

PDF
12643

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel P. P., Nelson R. S., De B., Hoffmann N., Rogers S. G., Fraley R. T., Beachy R. N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science. 1986 May 9;232(4751):738–743. doi: 10.1126/science.3457472. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. M., Palukaitis P., Zaitlin M. A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8759–8763. doi: 10.1073/pnas.89.18.8759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asselin A., Zaitlin M. Characterization of a second protein associated with virions of tobacco mosaic virus. Virology. 1978 Nov;91(1):173–181. doi: 10.1016/0042-6822(78)90365-3. [DOI] [PubMed] [Google Scholar]
  4. Audy P., Palukaitis P., Slack S. A., Zaitlin M. Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Mol Plant Microbe Interact. 1994 Jan-Feb;7(1):15–22. doi: 10.1094/mpmi-7-0015. [DOI] [PubMed] [Google Scholar]
  5. Brederode F. T., Taschner P. E., Posthumus E., Bol J. F. Replicase-mediated resistance to alfalfa mosaic virus. Virology. 1995 Mar 10;207(2):467–474. doi: 10.1006/viro.1995.1106. [DOI] [PubMed] [Google Scholar]
  6. Carr J. P., Gal-On A., Palukaitis P., Zaitlin M. Replicase-mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long-distance movement. Virology. 1994 Mar;199(2):439–447. doi: 10.1006/viro.1994.1142. [DOI] [PubMed] [Google Scholar]
  7. Carr J. P., Marsh L. E., Lomonossoff G. P., Sekiya M. E., Zaitlin M. Resistance to tobacco mosaic virus induced by the 54-kDa gene sequence requires expression of the 54-kDa protein. Mol Plant Microbe Interact. 1992 Sep-Oct;5(5):397–404. doi: 10.1094/mpmi-5-397. [DOI] [PubMed] [Google Scholar]
  8. Citovsky V., Wong M. L., Shaw A. L., Prasad B. V., Zambryski P. Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell. 1992 Apr;4(4):397–411. doi: 10.1105/tpc.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ding B., Haudenshield J. S., Hull R. J., Wolf S., Beachy R. N., Lucas W. J. Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell. 1992 Aug;4(8):915–928. doi: 10.1105/tpc.4.8.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ding B., Li Q., Nguyen L., Palukaitis P., Lucas W. J. Cucumber mosaic virus 3a protein potentiates cell-to-cell trafficking of CMV RNA in tobacco plants. Virology. 1995 Mar 10;207(2):345–353. doi: 10.1006/viro.1995.1093. [DOI] [PubMed] [Google Scholar]
  11. Donson J., Kearney C. M., Turpen T. H., Khan I. A., Kurath G., Turpen A. M., Jones G. E., Dawson W. O., Lewandowski D. J. Broad resistance to tobamoviruses is mediated by a modified tobacco mosaic virus replicase transgene. Mol Plant Microbe Interact. 1993 Sep-Oct;6(5):635–642. doi: 10.1094/mpmi-6-635. [DOI] [PubMed] [Google Scholar]
  12. Fitchen J. H., Beachy R. N. Genetically engineered protection against viruses in transgenic plants. Annu Rev Microbiol. 1993;47:739–763. doi: 10.1146/annurev.mi.47.100193.003515. [DOI] [PubMed] [Google Scholar]
  13. Fujiwara T., Giesman-Cookmeyer D., Ding B., Lommel S. A., Lucas W. J. Cell-to-Cell Trafficking of Macromolecules through Plasmodesmata Potentiated by the Red Clover Necrotic Mosaic Virus Movement Protein. Plant Cell. 1993 Dec;5(12):1783–1794. doi: 10.1105/tpc.5.12.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Golemboski D. B., Lomonossoff G. P., Zaitlin M. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6311–6315. doi: 10.1073/pnas.87.16.6311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heinlein M., Epel B. L., Padgett H. S., Beachy R. N. Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science. 1995 Dec 22;270(5244):1983–1985. doi: 10.1126/science.270.5244.1983. [DOI] [PubMed] [Google Scholar]
  16. Hellwald K. H., Palukaitis P. Nucleotide sequence and infectivity of cucumber mosaic cucumovirus (strain K) RNA2 involved in breakage of replicase-mediated resistance in tobacco. J Gen Virol. 1994 Aug;75(Pt 8):2121–2125. doi: 10.1099/0022-1317-75-8-2121. [DOI] [PubMed] [Google Scholar]
  17. Hunter T. When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell. 1995 Oct 6;83(1):1–4. doi: 10.1016/0092-8674(95)90225-2. [DOI] [PubMed] [Google Scholar]
  18. Kaplan I. B., Shintaku M. H., Li Q., Zhang L., Marsh L. E., Palukaitis P. Complementation of virus movement in transgenic tobacco expressing the cucumber mosaic virus 3a gene. Virology. 1995 May 10;209(1):188–199. doi: 10.1006/viro.1995.1242. [DOI] [PubMed] [Google Scholar]
  19. Li Q., Palukaitis P. Comparison of the nucleic acid- and NTP-binding properties of the movement protein of cucumber mosaic cucumovirus and tobacco mosaic tobamovirus. Virology. 1996 Feb 1;216(1):71–79. doi: 10.1006/viro.1996.0035. [DOI] [PubMed] [Google Scholar]
  20. Lucas W. J., Bouché-Pillon S., Jackson D. P., Nguyen L., Baker L., Ding B., Hake S. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science. 1995 Dec 22;270(5244):1980–1983. doi: 10.1126/science.270.5244.1980. [DOI] [PubMed] [Google Scholar]
  21. Lucas W. J. Plasmodesmata: intercellular channels for macromolecular transport in plants. Curr Opin Cell Biol. 1995 Oct;7(5):673–680. doi: 10.1016/0955-0674(95)80109-x. [DOI] [PubMed] [Google Scholar]
  22. Malyshenko S. I., Kondakova O. A., Nazarova JuV, Kaplan I. B., Taliansky M. E., Atabekov J. G. Reduction of tobacco mosaic virus accumulation in transgenic plants producing non-functional viral transport proteins. J Gen Virol. 1993 Jun;74(Pt 6):1149–1156. doi: 10.1099/0022-1317-74-6-1149. [DOI] [PubMed] [Google Scholar]
  23. McLean B. G., Zupan J., Zambryski P. C. Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell. 1995 Dec;7(12):2101–2114. doi: 10.1105/tpc.7.12.2101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nathanson S. D., Nelson L. T., Lee M. A spontaneous subcutaneous tumor in C57BL/6 mice that metastasizes to the liver. Clin Exp Metastasis. 1993 Jan;11(1):45–54. doi: 10.1007/BF00880065. [DOI] [PubMed] [Google Scholar]
  25. Noueiry A. O., Lucas W. J., Gilbertson R. L. Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell. 1994 Mar 11;76(5):925–932. doi: 10.1016/0092-8674(94)90366-2. [DOI] [PubMed] [Google Scholar]
  26. SIEGEL A., ZAITLIN M., SEHGAL O. P. The isolation of defective tobacco mosaic virus strains. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1845–1851. doi: 10.1073/pnas.48.10.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saito T., Yamanaka K., Okada Y. Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology. 1990 Jun;176(2):329–336. doi: 10.1016/0042-6822(90)90002-9. [DOI] [PubMed] [Google Scholar]
  28. Suzuki M., Kuwata S., Kataoka J., Masuta C., Nitta N., Takanami Y. Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology. 1991 Jul;183(1):106–113. doi: 10.1016/0042-6822(91)90123-s. [DOI] [PubMed] [Google Scholar]
  29. Taliansky M. E., García-Arenal F. Role of cucumovirus capsid protein in long-distance movement within the infected plant. J Virol. 1995 Feb;69(2):916–922. doi: 10.1128/jvi.69.2.916-922.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vaquero C., Turner A. P., Demangeat G., Sanz A., Serra M. T., Roberts K., García-Luque I. The 3a protein from cucumber mosaic virus increases the gating capacity of plasmodesmata in transgenic tobacco plants. J Gen Virol. 1994 Nov;75(Pt 11):3193–3197. doi: 10.1099/0022-1317-75-11-3193. [DOI] [PubMed] [Google Scholar]
  31. Waigmann E., Lucas W. J., Citovsky V., Zambryski P. Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1433–1437. doi: 10.1073/pnas.91.4.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Waigmann E., Zambryski P. Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell. 1995 Dec;7(12):2069–2079. doi: 10.1105/tpc.7.12.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wolf S., Deom C. M., Beachy R. N., Lucas W. J. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science. 1989 Oct 20;246(4928):377–379. doi: 10.1126/science.246.4928.377. [DOI] [PubMed] [Google Scholar]
  34. Wolf S., Deom C. M., Beachy R., Lucas W. J. Plasmodesmatal function is probed using transgenic tobacco plants that express a virus movement protein. Plant Cell. 1991 Jun;3(6):593–604. doi: 10.1105/tpc.3.6.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zaitlin M., Anderson J. M., Perry K. L., Zhang L., Palukaitis P. Specificity of replicase-mediated resistance to cucumber mosaic virus. Virology. 1994 Jun;201(2):200–205. doi: 10.1006/viro.1994.1286. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES