Abstract
Enteric bacteria, including stocked strains of pathogenic species and organisms naturally present in the stream, were capable of growth in a chemostat with autoclaved river water taken 750 m below a sewage outfall. Maximal specific growth rates for all organisms occurred at 30 C, whereas culture generation times ranged between 33.3 and 116 hr. Of the six laboratory strains of enteric species used, Escherichia coli and Enterobacter aerogenes grew at generation times of 34.5 and 33.3 hr, respectively, while the remaining Proteus, Arizona, Salmonella, and Shigella spp. reproduced at a rate two to three times slower than the coliforms. Little or no growth occurred in the water at incubation temperatures of 20 and 5 C, and death was observed for Salmonella senftenberg at 20 and 5 C and for E. aerogenes and Proteus rettgeri at 5 C. When enteric bacteria naturally present in the river water were employed in similar experiments, coliform bacteria demonstrated a generation time of approximately 116 hr, whereas fecal coliforms failed to grow. Growth of the bacteria from the river demonstrated a periodicity of approximately 100 hr, which suggests that much of the growth of these organisms in the chemostat may be on the glass surfaces. This phenomenon, however, was not observed with any of the stocked enteric species. Neither the stock cultures nor the aquatic strains were capable of growth in autoclaved river water taken above the sewage outfall at the three temperatures tested.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- HERBERT D., ELSWORTH R., TELLING R. C. The continuous culture of bacteria; a theoretical and experimental study. J Gen Microbiol. 1956 Jul;14(3):601–622. doi: 10.1099/00221287-14-3-601. [DOI] [PubMed] [Google Scholar]
- Hendricks C. W. Enteric bacterial metabolism of stream sediment eluates. Can J Microbiol. 1971 Apr;17(4):551–556. doi: 10.1139/m71-090. [DOI] [PubMed] [Google Scholar]
- Herbert D., Phipps P. J., Tempest D. W. The chemostat: design and instrumentation. Lab Pract. 1965 Oct;14(10):1150–1161. [PubMed] [Google Scholar]
- Jannasch H. W. Estimations of bacterial growth rates in natural waters. J Bacteriol. 1969 Jul;99(1):156–160. doi: 10.1128/jb.99.1.156-160.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones H. C., Roth I. L., Sanders W. M., 3rd Electron microscopic study of a slime layer. J Bacteriol. 1969 Jul;99(1):316–325. doi: 10.1128/jb.99.1.316-325.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGrew S. B., Mallette M. F. ENERGY OF MAINTENANCE IN ESCHERICHIA COLI. J Bacteriol. 1962 Apr;83(4):844–850. doi: 10.1128/jb.83.4.844-850.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris D. L. Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. Science. 1948 Mar 5;107(2775):254–255. doi: 10.1126/science.107.2775.254. [DOI] [PubMed] [Google Scholar]
- NOVICK A. Growth of bacteria. Annu Rev Microbiol. 1955;9:97–110. doi: 10.1146/annurev.mi.09.100155.000525. [DOI] [PubMed] [Google Scholar]
- POSTGATE J. R., CRUMPTON J. E., HUNTER J. R. The measurement of bacterial viabilities by slide culture. J Gen Microbiol. 1961 Jan;24:15–24. doi: 10.1099/00221287-24-1-15. [DOI] [PubMed] [Google Scholar]
- POSTGATE J. R., HUNTER J. R. The survival of starved bacteria. J Gen Microbiol. 1962 Oct;29:233–263. doi: 10.1099/00221287-29-2-233. [DOI] [PubMed] [Google Scholar]
- Powell E. O. Theory of the chemostat. Lab Pract. 1965 Oct;14(10):1145–passim. [PubMed] [Google Scholar]
- Ryan F. J. Spontaneous Mutation in Non-Dividing Bacteria. Genetics. 1955 Sep;40(5):726–738. doi: 10.1093/genetics/40.5.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders W. M., 3rd Oxygen utilization by slime organisms in continuous culture. Air Water Pollut. 1966 Apr;10(4):253–276. [PubMed] [Google Scholar]
- Shehata T. E., Marr A. G. Effect of nutrient concentration on the growth of Escherichia coli. J Bacteriol. 1971 Jul;107(1):210–216. doi: 10.1128/jb.107.1.210-216.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stuart D. G., Bissonnette G. K., Goodrich T. D., Walter W. G. Effects of multiple use on water quality of high-mountain watersheds: bacteriological investigations of mountain streams. Appl Microbiol. 1971 Dec;22(6):1048–1054. doi: 10.1128/am.22.6.1048-1054.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]