Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1972 Dec;24(6):878–884. doi: 10.1128/am.24.6.878-884.1972

Thermal Injury and Recovery of Bacillus subtilis

L Lenkart Miller 1,2, Z John Ordal 1,2
PMCID: PMC380690  PMID: 4346627

Abstract

Exposure of Bacillus subtilis NCTC 8236 to sublethal temperatures produced a change in the sensitivity of the organism to salt and polymyxin. After 30 min at 47 C, 90% of the population was unable to grow on a modified sulfite polymyxin sulfadiazine agar containing an added 1% NaCl, 1% glucose, and 1% asparagine. The data presented demonstrate that thermal injury results in degradation of both 16S and 23S ribonucleic acid (RNA) and in damage to the cell membrane, suggested by leakage into the heating mestruum of material absorbing at 260 nm. When the cells were placed in a recovery medium (Trypticase soy broth), complete recovery, indicated by a returned tolerance to salt and polymyxin, occurred within 2 hr. The presence of a protein inhibitor (chloramphenicol) and cell wall inhibitors (vancomycin and penicillin) during recovery had no effect, whereas the presence of an RNA inhibitor (actinomycin D) effectively inhibited recovery. Further data demonstrated that the injured cells were able to resynthesize both species of ribosomal RNA during recovery by using the fragments which resulted from the injury process. Also, precursor 16S and precursor 23S particles accumulated during recovery. The maturation of the precursor particles during recovery was not affected by the presence of chloramphenicol in the recovery medium.

Full text

PDF
878

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allwood M. C., Russell A. D. Thermally induced changes in the physical properties of Staphylococcus aureus. J Appl Bacteriol. 1969 Mar;32(1):68–78. doi: 10.1111/j.1365-2672.1969.tb02190.x. [DOI] [PubMed] [Google Scholar]
  2. Allwood M. C., Russell A. D. Thermally induced ribonucleic acid degradation and leakage of substances from the metabolic pool in Staphylococcus aureus. J Bacteriol. 1968 Feb;95(2):345–349. doi: 10.1128/jb.95.2.345-349.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BEST G. K., DURHAM N. N. EFFECT OF VANCOMYCIN ON BACILLUS SUBTILIS. Arch Biochem Biophys. 1964 Apr;105:120–125. doi: 10.1016/0003-9861(64)90242-5. [DOI] [PubMed] [Google Scholar]
  4. BUSTA F. F., JEZESKI J. J. EFFECT OF SODIUM CHLORIDE CONCENTRATION IN AN AGAR MEDIUM ON GROWTH OF HEAT-SHOCKED STAPHYLOCOCCUS AUREUS. Appl Microbiol. 1963 Sep;11:404–407. doi: 10.1128/am.11.5.404-407.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bluhm L., Ordal Z. J. Effect of sublethal heat on the metabolic activity of Staphylococcus aureus. J Bacteriol. 1969 Jan;97(1):140–150. doi: 10.1128/jb.97.1.140-150.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark C. W., Ordal Z. J. Thermal injury and recovery of Salmonella typhimurium and its effect on enumeration procedures. Appl Microbiol. 1969 Sep;18(3):332–336. doi: 10.1128/am.18.3.332-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark C. W., Witter L. D., Ordal Z. J. Thermal injury and recovery of Streptococcus faecalis. Appl Microbiol. 1968 Nov;16(11):1764–1769. doi: 10.1128/am.16.11.1764-1769.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cook T. M., Brown K. G., Boyle J. V., Goss W. A. Bactericidal action of nalidixic acid on Bacillus subtilis. J Bacteriol. 1966 Nov;92(5):1510–1514. doi: 10.1128/jb.92.5.1510-1514.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haight R. D., Ordal Z. J. Thermally induced degradation of staphylococcal ribosomes. Can J Microbiol. 1969 Jan;15(1):15–19. doi: 10.1139/m69-003. [DOI] [PubMed] [Google Scholar]
  10. Hecht N. B., Woese C. R. Separation of bacterial ribosomal ribonucleic acid from its macromolecular precursors by polyacrylamide gel electrophoresis. J Bacteriol. 1968 Mar;95(3):986–990. doi: 10.1128/jb.95.3.986-990.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iandolo J. J., Ordal Z. J. Repair of thermal injury of Staphylococcus aureus. J Bacteriol. 1966 Jan;91(1):134–142. doi: 10.1128/jb.91.1.134-142.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KIRBY K. S. A new method for the isolation of ribonucleic acids from mammalian tissues. Biochem J. 1956 Nov;64(3):405–408. doi: 10.1042/bj0640405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mukherjee P., Bhattacharjee S. B. Recovery of bacteria from damages induced by heat. J Gen Microbiol. 1970 Feb;60(2):233–238. doi: 10.1099/00221287-60-2-233. [DOI] [PubMed] [Google Scholar]
  14. Rosenthal L. J., Iandolo J. J. Thermally induced intracellular alteration of ribosomal ribonucleic acid. J Bacteriol. 1970 Sep;103(3):833–835. doi: 10.1128/jb.103.3.833-835.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rosenthal L. J., Martin S. E., Pariza M. W., Iandolo J. J. Ribosome synthesis in thermally shocked cells of Staphylococcus aureus. J Bacteriol. 1972 Jan;109(1):243–249. doi: 10.1128/jb.109.1.243-249.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Russell A. D., Harries D. Damage to Escherichia coli on exposure to moist heat. Appl Microbiol. 1968 Sep;16(9):1394–1399. doi: 10.1128/am.16.9.1394-1399.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sogin S. J., Ordal Z. J. Regeneration of ribosomes and ribosomal ribonucleic acid during repair of thermal injury to Staphylococcus. J Bacteriol. 1967 Oct;94(4):1082–1087. doi: 10.1128/jb.94.4.1082-1087.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Strominger J. L., Izaki K., Matsuhashi M., Tipper D. J. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Fed Proc. 1967 Jan-Feb;26(1):9–22. [PubMed] [Google Scholar]
  19. Tomlins R. I., Ordal Z. J. Precursor ribosomal ribonucleic acid and ribosome accumulation in vivo during the recovery of Salmonella typhimurium from thermal injury. J Bacteriol. 1971 Jul;107(1):134–142. doi: 10.1128/jb.107.1.134-142.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tomlins R. I., Ordal Z. J. Requirements of Salmonella typhimurium for recovery from thermal injury. J Bacteriol. 1971 Feb;105(2):512–518. doi: 10.1128/jb.105.2.512-518.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tomlins R. I., Pierson M. D., Ordal Z. J. Effect of thermal injury on the TCA cycle enzymes of Staphylococcus aureus MF 31 and Salmonella typhimurium 7136. Can J Microbiol. 1971 Jun;17(6):759–765. doi: 10.1139/m71-121. [DOI] [PubMed] [Google Scholar]
  22. Weber M. J., DeMoss J. A. Inhibition of the peptide bond synthesizing cycle by chloramphenicol. J Bacteriol. 1969 Mar;97(3):1099–1105. doi: 10.1128/jb.97.3.1099-1105.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Winshell E. B., Rosenkranz H. S. Nalidixic Acid and the Metabolism of Escherichia coli. J Bacteriol. 1970 Dec;104(3):1168–1175. doi: 10.1128/jb.104.3.1168-1175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES