Abstract
A study was made of the metabolic processes associated with macroconidial germination in Microsporum gypseum. The optimum conditions for stimulation of endogenous respiration, changes in chemical composition as germination proceeds, and the uptake and synthetic fates of amino acids, glucose, and uracil were investigated. The assimilation and conversion of 14C-glucose, 14C-amino acids, and 14C-uracil into the cell pool and into trichloroacetic acid-precipitable material were studied during the early stages of germination (i.e., prior to germ-tube emergence). The macroconidia were not metabolically inert for any significant period of time after exposure to germination conditions. Rather, the spores rapidly assimilated all metabolites and slowly converted them into macromolecules. Investigations of the effect of inhibitors of nucleic acid and protein synthesis prior to germ-tube emergence and during early germ-tube elongation suggested significant changes in metabolism and cell permeability may be correlated with the emergence of germ tubes. Radioactivity of incorporated glucose was found to be associated largely with the lipid fractions of the macroconidia early in germination.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barash I., Conway M. L., Howard D. H. Carbon catabolism and synthesis of macromolecules during spore germination of Microsporum gypseum. J Bacteriol. 1967 Feb;93(2):656–662. doi: 10.1128/jb.93.2.656-662.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brambl R. M., Van Etten J. L. Protein synthesis during fungal spore germination. V. Evidence that the ungerminated conidiospores of Botryodiplodia theobromae contain messenger ribonucleic acid. Arch Biochem Biophys. 1970 Apr;137(2):442–452. doi: 10.1016/0003-9861(70)90461-3. [DOI] [PubMed] [Google Scholar]
- CLIFTON C. E., SOBEK J. M. Endogenous respiration of Bacillus cereus. J Bacteriol. 1961 Aug;82:252–256. doi: 10.1128/jb.82.2.252-256.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HORIKOSHI K., IIDA S., IKEDA Y. MANNITOL AND MANNITOL DEHYDROGENASES IN CONIDIA OF ASPERGILLUS ORYZAE. J Bacteriol. 1965 Feb;89:326–330. doi: 10.1128/jb.89.2.326-330.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hollomon D. W. Protein synthesis during germination of Peronospora tabacina (Adam) conidia. Arch Biochem Biophys. 1971 Aug;145(2):643–649. doi: 10.1016/s0003-9861(71)80024-3. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leighton T. J., Stock J. J. Biochemical changes during fungal sporulation and spore germination. I. Phenyl methyl sulfonyl fluoride inhibition of macroconidial germination in Microsporum gypseum. J Bacteriol. 1970 Mar;101(3):931–940. doi: 10.1128/jb.101.3.931-940.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leighton T. J., Stock J. J. Heat-induced macroconidia germination in Microsporum gypseum. Appl Microbiol. 1969 Mar;17(3):473–475. doi: 10.1128/am.17.3.473-475.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leighton T. J., Stock J. J. Isolation and preliminary characterization of developmental mutants from Microsporum gypseum. J Bacteriol. 1970 Nov;104(2):834–838. doi: 10.1128/jb.104.2.834-838.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leighton T. J., Stock J. J., Kelln R. A. Macroconidial germination in Microsporum gypseum. J Bacteriol. 1970 Aug;103(2):439–446. doi: 10.1128/jb.103.2.439-446.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovett J. S. Reactivation of ribonucleic acid and protein synthesis during germination of Blastocladiella zoospores and the role of the ribosomal nuclear cap. J Bacteriol. 1968 Oct;96(4):962–969. doi: 10.1128/jb.96.4.962-969.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEIDHARDT F. C., MAGASANIK B. Studies on the role of ribonucleic acid in the growth of bacteria. Biochim Biophys Acta. 1960 Jul 29;42:99–116. doi: 10.1016/0006-3002(60)90757-5. [DOI] [PubMed] [Google Scholar]
- NISHI A. Role of polyphosphate and phospholipid in germinating spores of Aspergillus niger. J Bacteriol. 1961 Jan;81:10–19. doi: 10.1128/jb.81.1.10-19.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page W. J., Stock J. J. Isolation and characterization of Microsporum gypseum lysosomes: role of lysosomes in macroconidia germination. J Bacteriol. 1972 Apr;110(1):354–362. doi: 10.1128/jb.110.1.354-362.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page W. J., Stock J. J. Regulation and self-inhibition of Microsporum gypseum Macroconidia germination. J Bacteriol. 1971 Oct;108(1):276–281. doi: 10.1128/jb.108.1.276-281.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soll D. R., Sonneborn D. R. Zoospore germination in Blastocladiella emersonii. 3. Structural changes in relation to protein and RNA synthesis. J Cell Sci. 1971 Nov;9(3):679–699. doi: 10.1242/jcs.9.3.679. [DOI] [PubMed] [Google Scholar]
- WALKER A. T., SMITH F. G. Effect of actidione on growth and respiration of Myrothecium verrucaria. Proc Soc Exp Biol Med. 1952 Nov;81(2):556–559. doi: 10.3181/00379727-81-19939. [DOI] [PubMed] [Google Scholar]
- YANAGITA T. Biochemical aspects on the germination of conidiospores of Aspergillus niger. Arch Mikrobiol. 1957;26(4):329–344. doi: 10.1007/BF00407583. [DOI] [PubMed] [Google Scholar]

