Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 15;93(21):11426–11427. doi: 10.1073/pnas.93.21.11426

A speed limit for protein folding.

J A McCammon 1
PMCID: PMC38073  PMID: 8876151

Full text

PDF
11426

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antosiewicz J., McCammon J. A., Wlodek S. T., Gilson M. K. Simulation of charge-mutant acetylcholinesterases. Biochemistry. 1995 Apr 4;34(13):4211–4219. doi: 10.1021/bi00013a009. [DOI] [PubMed] [Google Scholar]
  2. Baldwin R. L. Why is protein folding so fast? Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2627–2628. doi: 10.1073/pnas.93.7.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballew R. M., Sabelko J., Gruebele M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5759–5764. doi: 10.1073/pnas.93.12.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bryngelson J. D., Wolynes P. G. Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7524–7528. doi: 10.1073/pnas.84.21.7524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Getzoff E. D., Cabelli D. E., Fisher C. L., Parge H. E., Viezzoli M. S., Banci L., Hallewell R. A. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature. 1992 Jul 23;358(6384):347–351. doi: 10.1038/358347a0. [DOI] [PubMed] [Google Scholar]
  6. Hagen S. J., Hofrichter J., Szabo A., Eaton W. A. Diffusion-limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11615–11617. doi: 10.1073/pnas.93.21.11615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Karplus M., Weaver D. L. Protein-folding dynamics. Nature. 1976 Apr 1;260(5550):404–406. doi: 10.1038/260404a0. [DOI] [PubMed] [Google Scholar]
  8. McCammon J. A. Superperfect enzymes. Curr Biol. 1992 Nov;2(11):585–586. doi: 10.1016/0960-9822(92)90158-7. [DOI] [PubMed] [Google Scholar]
  9. Pascher T., Chesick J. P., Winkler J. R., Gray H. B. Protein folding triggered by electron transfer. Science. 1996 Mar 15;271(5255):1558–1560. doi: 10.1126/science.271.5255.1558. [DOI] [PubMed] [Google Scholar]
  10. Peters G. H., Olsen O. H., Svendsen A., Wade R. C. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Biophys J. 1996 Jul;71(1):119–129. doi: 10.1016/S0006-3495(96)79207-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wade R. C. Brownian dynamics simulations of enzyme-substrate encounter. Biochem Soc Trans. 1996 Feb;24(1):254–259. doi: 10.1042/bst0240254. [DOI] [PubMed] [Google Scholar]
  12. Waldburger C. D., Jonsson T., Sauer R. T. Barriers to protein folding: formation of buried polar interactions is a slow step in acquisition of structure. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2629–2634. doi: 10.1073/pnas.93.7.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]
  14. Wolynes P., Luthey-Schulten Z., Onuchic J. Fast-folding experiments and the topography of protein folding energy landscapes. Chem Biol. 1996 Jun;3(6):425–432. doi: 10.1016/s1074-5521(96)90090-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES