Abstract
While the elegance and efficiency of enzymatic catalysis have long tempted chemists and biochemists with reductionist leanings to try to mimic the functions of natural enzymes in much smaller peptides, such efforts have only rarely produced catalysts with biologically interesting properties. However, the advent of genetic engineering and hybridoma technology and the discovery of catalytic RNA have led to new and very promising alternative means of biocatalyst development. Synthetic chemists have also had some success in creating nonpeptide catalysts with certain enzyme-like characteristics, although their rates and specificities are generally much poorer than those exhibited by the best novel biocatalysts based on natural structures. A comparison of the various approaches from theoretical and practical viewpoints is presented. It is suggested that, given our current level of understanding, the most fruitful methods may incorporate both iterative selection strategies and rationally chosen small perturbations, superimposed on frameworks designed by nature.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahmsén L., Tom J., Burnier J., Butcher K. A., Kossiakoff A., Wells J. A. Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry. 1991 Apr 30;30(17):4151–4159. doi: 10.1021/bi00231a007. [DOI] [PubMed] [Google Scholar]
- Atassi M. Z., Manshouri T. Design of peptide enzymes (pepzymes): surface-simulation synthetic peptides that mimic the chymotrypsin and trypsin active sites exhibit the activity and specificity of the respective enzyme. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8282–8286. doi: 10.1073/pnas.90.17.8282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bashkin J. K., Sampath U., Frolova E. Ribozyme mimics as catalytic antisense reagents. Appl Biochem Biotechnol. 1995 Jul-Sep;54(1-3):43–56. doi: 10.1007/BF02787910. [DOI] [PubMed] [Google Scholar]
- Baumann W. K., Bizzozero S. A., Dutler H. Specificity of alpha-chymotrypsin. Dipeptide substrates. FEBS Lett. 1970 Jun 27;8(5):257–260. doi: 10.1016/0014-5793(70)80280-0. [DOI] [PubMed] [Google Scholar]
- Braisted A. C., Wells J. A. Minimizing a binding domain from protein A. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5688–5692. doi: 10.1073/pnas.93.12.5688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruice T. C., Brown A., Harris D. O. On the concept of orbital steering in catalytic reactions. Proc Natl Acad Sci U S A. 1971 Mar;68(3):658–661. doi: 10.1073/pnas.68.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryson J. W., Betz S. F., Lu H. S., Suich D. J., Zhou H. X., O'Neil K. T., DeGrado W. F. Protein design: a hierarchic approach. Science. 1995 Nov 10;270(5238):935–941. doi: 10.1126/science.270.5238.935. [DOI] [PubMed] [Google Scholar]
- Cai D. W., Mukhopadhyay T., Roth J. A. Suppression of lung cancer cell growth by ribozyme-mediated modification of p53 pre-mRNA. Cancer Gene Ther. 1995 Sep;2(3):199–205. [PubMed] [Google Scholar]
- Carter P., Abrahmsén L., Wells J. A. Probing the mechanism and improving the rate of substrate-assisted catalysis in subtilisin BPN'. Biochemistry. 1991 Jun 25;30(25):6142–6148. doi: 10.1021/bi00239a009. [DOI] [PubMed] [Google Scholar]
- Cech T. R. Catalytic RNA: structure and mechanism. Biochem Soc Trans. 1993 May;21(2):229–234. doi: 10.1042/bst0210229. [DOI] [PubMed] [Google Scholar]
- Cech T. R., Herschlag D., Piccirilli J. A., Pyle A. M. RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization. J Biol Chem. 1992 Sep 5;267(25):17479–17482. [PubMed] [Google Scholar]
- Connors T. A., Knox R. J. Prodrugs in cancer chemotherapy. Stem Cells. 1995 Sep;13(5):501–511. doi: 10.1002/stem.5530130507. [DOI] [PubMed] [Google Scholar]
- Corey D. R., Phillips M. A. Cyclic peptides as proteases: a reevaluation. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4106–4109. doi: 10.1073/pnas.91.10.4106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corey D. R., Willett W. S., Coombs G. S., Craik C. S. Trypsin specificity increased through substrate-assisted catalysis. Biochemistry. 1995 Sep 12;34(36):11521–11527. doi: 10.1021/bi00036a027. [DOI] [PubMed] [Google Scholar]
- Corey M. J., Hallakova E., Pugh K., Stewart J. M. Studies on chymotrypsin-like catalysis by synthetic peptides. Appl Biochem Biotechnol. 1994 May-Jun;47(2-3):199–212. doi: 10.1007/BF02787935. [DOI] [PubMed] [Google Scholar]
- DIXON G. H., GO S., NEURATH H. Peptides combined with 14C-diisopropyl phosphoryl following degradation of 14C-DIP-trypsin with alpha-chymotrypsin. Biochim Biophys Acta. 1956 Jan;19(1):193–195. doi: 10.1016/0006-3002(56)90414-0. [DOI] [PubMed] [Google Scholar]
- Defay T., Cohen F. E. Evaluation of current techniques for ab initio protein structure prediction. Proteins. 1995 Nov;23(3):431–445. doi: 10.1002/prot.340230317. [DOI] [PubMed] [Google Scholar]
- Denman R. B. Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques. 1993 Dec;15(6):1090–1095. [PubMed] [Google Scholar]
- Douglas K. T. Alteration of enzyme specificity and catalysis. Curr Opin Biotechnol. 1992 Aug;3(4):370–377. doi: 10.1016/0958-1669(92)90165-f. [DOI] [PubMed] [Google Scholar]
- Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990 Aug 30;346(6287):818–822. doi: 10.1038/346818a0. [DOI] [PubMed] [Google Scholar]
- Epand R. M., Scheraga H. A. The influence of long-range interactions on the structure of myoglobin. Biochemistry. 1968 Aug;7(8):2864–2872. doi: 10.1021/bi00848a024. [DOI] [PubMed] [Google Scholar]
- Gernert K. M., Surles M. C., Labean T. H., Richardson J. S., Richardson D. C. The Alacoil: a very tight, antiparallel coiled-coil of helices. Protein Sci. 1995 Nov;4(11):2252–2260. doi: 10.1002/pro.5560041102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glick D. M. Ligand-induced pK changes in chymotrypsin. Biochemistry. 1968 Oct;7(10):3390–3396. doi: 10.1021/bi00850a012. [DOI] [PubMed] [Google Scholar]
- Gutte B., Däumigen M., Wittschieber E. Design, synthesis and characterisation of a 34-residue polypeptide that interacts with nucleic acids. Nature. 1979 Oct 25;281(5733):650–655. doi: 10.1038/281650a0. [DOI] [PubMed] [Google Scholar]
- Hahn K. W., Klis W. A., Stewart J. M. Design and synthesis of a peptide having chymotrypsin-like esterase activity. Science. 1990 Jun 22;248(4962):1544–1547. doi: 10.1126/science.2360048. [DOI] [PubMed] [Google Scholar]
- Handel T. M., Williams S. A., DeGrado W. F. Metal ion-dependent modulation of the dynamics of a designed protein. Science. 1993 Aug 13;261(5123):879–885. doi: 10.1126/science.8346440. [DOI] [PubMed] [Google Scholar]
- Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
- Herschlag D., Cech T. R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry. 1990 Nov 6;29(44):10159–10171. doi: 10.1021/bi00496a003. [DOI] [PubMed] [Google Scholar]
- Herschlag D. Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: more isn't always better. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6921–6925. doi: 10.1073/pnas.88.16.6921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilgenfeld R. How do the GTPases really work? Nat Struct Biol. 1995 Jan;2(1):3–6. doi: 10.1038/nsb0195-3. [DOI] [PubMed] [Google Scholar]
- Hirschmann R., Smith A. B., 3rd, Taylor C. M., Benkovic P. A., Taylor S. D., Yager K. M., Sprengeler P. A., Benkovic S. J. Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids. Science. 1994 Jul 8;265(5169):234–237. doi: 10.1126/science.8023141. [DOI] [PubMed] [Google Scholar]
- Horwitz M. S., Loeb L. A. Promoters selected from random DNA sequences. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7405–7409. doi: 10.1073/pnas.83.19.7405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hummel J. P., Witzel H. The binding of nucleotides by pancreatic ribonuclease. I. Proton uptake and release associated with anion binding. J Biol Chem. 1966 Mar 10;241(5):1023–1030. [PubMed] [Google Scholar]
- Iwakura Y., Uno K., Toda F., Onozuka S., Hattori K., Bender M. L. Letter: The stereochemically correct catalytic site on cyclodextrin resulting in a better enzyme model. J Am Chem Soc. 1975 Jul 23;97(15):4432–4434. doi: 10.1021/ja00848a068. [DOI] [PubMed] [Google Scholar]
- Jackson D. Y., Prudent J. R., Baldwin E. P., Schultz P. G. A mutagenesis study of a catalytic antibody. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):58–62. doi: 10.1073/pnas.88.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen J. R., Schultz P. G. Antibody catalysis of peptide bond formation. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5888–5892. doi: 10.1073/pnas.91.13.5888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janda K. D., Shevlin C. G., Lerner R. A. Antibody catalysis of a disfavored chemical transformation. Science. 1993 Jan 22;259(5094):490–493. doi: 10.1126/science.8424171. [DOI] [PubMed] [Google Scholar]
- Jeffery J. Enzymes: chemistry and biochemistry. EXS. 1995;73:79–104. doi: 10.1007/978-3-0348-9061-8_5. [DOI] [PubMed] [Google Scholar]
- Jeltsch A., Alves J., Wolfes H., Maass G., Pingoud A. Substrate-assisted catalysis in the cleavage of DNA by the EcoRI and EcoRV restriction enzymes. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8499–8503. doi: 10.1073/pnas.90.18.8499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jencks W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv Enzymol Relat Areas Mol Biol. 1975;43:219–410. doi: 10.1002/9780470122884.ch4. [DOI] [PubMed] [Google Scholar]
- Jencks W. P., Page M. I. "Orbital steering", entropy, and rate accelerations. Biochem Biophys Res Commun. 1974 Apr 8;57(3):887–892. doi: 10.1016/0006-291x(74)90629-9. [DOI] [PubMed] [Google Scholar]
- Johnsson K., Allemann R. K., Widmer H., Benner S. A. Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature. 1993 Oct 7;365(6446):530–532. doi: 10.1038/365530a0. [DOI] [PubMed] [Google Scholar]
- Jäger J., Pauptit R. A., Sauder U., Jansonius J. N. Three-dimensional structure of a mutant E. coli aspartate aminotransferase with increased enzymic activity. Protein Eng. 1994 May;7(5):605–612. doi: 10.1093/protein/7.5.605. [DOI] [PubMed] [Google Scholar]
- Koshland D. E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A. 1958 Feb;44(2):98–104. doi: 10.1073/pnas.44.2.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraut J. Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem. 1977;46:331–358. doi: 10.1146/annurev.bi.46.070177.001555. [DOI] [PubMed] [Google Scholar]
- Kruger K., Grabowski P. J., Zaug A. J., Sands J., Gottschling D. E., Cech T. R. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982 Nov;31(1):147–157. doi: 10.1016/0092-8674(82)90414-7. [DOI] [PubMed] [Google Scholar]
- Kuroki R., Taniyama Y., Seko C., Nakamura H., Kikuchi M., Ikehara M. Design and creation of a Ca2+ binding site in human lysozyme to enhance structural stability. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6903–6907. doi: 10.1073/pnas.86.18.6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
- Lerner R. A., Benkovic S. J., Schultz P. G. At the crossroads of chemistry and immunology: catalytic antibodies. Science. 1991 May 3;252(5006):659–667. doi: 10.1126/science.2024118. [DOI] [PubMed] [Google Scholar]
- Lesley S. A., Patten P. A., Schultz P. G. A genetic approach to the generation of antibodies with enhanced catalytic activities. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1160–1165. doi: 10.1073/pnas.90.4.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li T., Janda K. D., Lerner R. A. Cationic cyclopropanation by antibody catalysis. Nature. 1996 Jan 25;379(6563):326–327. doi: 10.1038/379326a0. [DOI] [PubMed] [Google Scholar]
- Matsumura I., Kirsch J. F. Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis. Biochemistry. 1996 Feb 13;35(6):1881–1889. doi: 10.1021/bi951671q. [DOI] [PubMed] [Google Scholar]
- Matthews B. W., Craik C. S., Neurath H. Can small cyclic peptides have the activity and specificity of proteolytic enzymes? Proc Natl Acad Sci U S A. 1994 May 10;91(10):4103–4105. doi: 10.1073/pnas.91.10.4103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyashita H., Karaki Y., Kikuchi M., Fujii I. Prodrug activation via catalytic antibodies. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5337–5340. doi: 10.1073/pnas.90.11.5337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moussaoui M., Guasch A., Boix E., Cuchillo C., Nogués M. The role of non-catalytic binding subsites in the endonuclease activity of bovine pancreatic ribonuclease A. J Biol Chem. 1996 Mar 1;271(9):4687–4692. doi: 10.1074/jbc.271.9.4687. [DOI] [PubMed] [Google Scholar]
- Munir K. M., French D. C., Dube D. K., Loeb L. A. Herpes thymidine kinase mutants with altered catalytic efficiencies obtained by random sequence selection. Protein Eng. 1994 Jan;7(1):83–89. doi: 10.1093/protein/7.1.83. [DOI] [PubMed] [Google Scholar]
- Muraki M., Morikawa M., Jigami Y., Tanaka H. Engineering of human lysozyme as a polyelectrolyte by the alteration of molecular surface charge. Protein Eng. 1988 Apr;2(1):49–54. doi: 10.1093/protein/2.1.49. [DOI] [PubMed] [Google Scholar]
- Ohgushi M., Wada A. 'Molten-globule state': a compact form of globular proteins with mobile side-chains. FEBS Lett. 1983 Nov 28;164(1):21–24. doi: 10.1016/0014-5793(83)80010-6. [DOI] [PubMed] [Google Scholar]
- Paul S., Li L., Kalaga R., Wilkins-Stevens P., Stevens F. J., Solomon A. Natural catalytic antibodies: peptide-hydrolyzing activities of Bence Jones proteins and VL fragment. J Biol Chem. 1995 Jun 23;270(25):15257–15261. doi: 10.1074/jbc.270.25.15257. [DOI] [PubMed] [Google Scholar]
- Paul S., Volle D. J., Beach C. M., Johnson D. R., Powell M. J., Massey R. J. Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody. Science. 1989 Jun 9;244(4909):1158–1162. doi: 10.1126/science.2727702. [DOI] [PubMed] [Google Scholar]
- Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
- Pollack S. J., Jacobs J. W., Schultz P. G. Selective chemical catalysis by an antibody. Science. 1986 Dec 19;234(4783):1570–1573. doi: 10.1126/science.3787262. [DOI] [PubMed] [Google Scholar]
- Pérez-Payá E., Houghten R. A., Blondelle S. E. Functionalized protein-like structures from conformationally defined synthetic combinatorial libraries. J Biol Chem. 1996 Feb 23;271(8):4120–4126. doi: 10.1074/jbc.271.8.4120. [DOI] [PubMed] [Google Scholar]
- Regan L., DeGrado W. F. Characterization of a helical protein designed from first principles. Science. 1988 Aug 19;241(4868):976–978. doi: 10.1126/science.3043666. [DOI] [PubMed] [Google Scholar]
- Regan L. Protein design: novel metal-binding sites. Trends Biochem Sci. 1995 Jul;20(7):280–285. doi: 10.1016/s0968-0004(00)89044-1. [DOI] [PubMed] [Google Scholar]
- Reidhaar-Olson J. F., Sauer R. T. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science. 1988 Jul 1;241(4861):53–57. doi: 10.1126/science.3388019. [DOI] [PubMed] [Google Scholar]
- Roberts V. A., Iverson B. L., Iverson S. A., Benkovic S. J., Lerner R. A., Getzoff E. D., Tainer J. A. Antibody remodeling: a general solution to the design of a metal-coordination site in an antibody binding pocket. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6654–6658. doi: 10.1073/pnas.87.17.6654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson D. E., Farid R. S., Moser C. C., Urbauer J. L., Mulholland S. E., Pidikiti R., Lear J. D., Wand A. J., DeGrado W. F., Dutton P. L. Design and synthesis of multi-haem proteins. Nature. 1994 Mar 31;368(6470):425–432. doi: 10.1038/368425a0. [DOI] [PubMed] [Google Scholar]
- Rosenberry T. L. Catalysis by acetylcholinesterase: evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base catalysis. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3834–3838. doi: 10.1073/pnas.72.10.3834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachdev G. P., Fruton J. S. Secondary enzyme-substrate interactions and the specificity of pepsin. Biochemistry. 1970 Nov 10;9(23):4465–4470. doi: 10.1021/bi00825a001. [DOI] [PubMed] [Google Scholar]
- Schultz P. G., Lerner R. A. From molecular diversity to catalysis: lessons from the immune system. Science. 1995 Sep 29;269(5232):1835–1842. doi: 10.1126/science.7569920. [DOI] [PubMed] [Google Scholar]
- Shabat D., Itzhaky H., Reymond J. L., Keinan E. Antibody catalysis of a reaction otherwise strongly disfavoured in water. Nature. 1995 Mar 9;374(6518):143–146. doi: 10.1038/374143a0. [DOI] [PubMed] [Google Scholar]
- Smiley J. A., Benkovic S. J. Selection of catalytic antibodies for a biosynthetic reaction from a combinatorial cDNA library by complementation of an auxotrophic Escherichia coli: antibodies for orotate decarboxylation. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8319–8323. doi: 10.1073/pnas.91.18.8319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storm D. R., Koshland D. E. A source for the special catalytic power of enzymes: orbital steering. Proc Natl Acad Sci U S A. 1970 Jun;66(2):445–452. doi: 10.1073/pnas.66.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stull R. A., Szoka F. C., Jr Antigene, ribozyme and aptamer nucleic acid drugs: progress and prospects. Pharm Res. 1995 Apr;12(4):465–483. doi: 10.1023/a:1016281324761. [DOI] [PubMed] [Google Scholar]
- Tang Y., Hicks J. B., Hilvert D. In vivo catalysis of a metabolically essential reaction by an antibody. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8784–8786. doi: 10.1073/pnas.88.19.8784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson R. C., Blout E. R. Restrictions on the binding of proline-containing peptides to elastase. Biochemistry. 1973 Jan 2;12(1):51–57. doi: 10.1021/bi00725a010. [DOI] [PubMed] [Google Scholar]
- Titmas R. C., Angeles T. S., Sugasawara R., Aman N., Darsley M. J., Blackburn G., Martin M. T. Aspects of antibody-catalyzed primary amide hydrolysis. Appl Biochem Biotechnol. 1994 May-Jun;47(2-3):277–292. doi: 10.1007/BF02787940. [DOI] [PubMed] [Google Scholar]
- Toney M. D., Kirsch J. F. Direct Brønsted analysis of the restoration of activity to a mutant enzyme by exogenous amines. Science. 1989 Mar 17;243(4897):1485–1488. doi: 10.1126/science.2538921. [DOI] [PubMed] [Google Scholar]
- Tramontano A., Janda K. D., Lerner R. A. Catalytic antibodies. Science. 1986 Dec 19;234(4783):1566–1570. doi: 10.1126/science.3787261. [DOI] [PubMed] [Google Scholar]
- Tuchscherer G., Mutter M. Templates in protein de novo design. J Biotechnol. 1995 Jul 31;41(2-3):197–210. doi: 10.1016/0168-1656(95)00010-n. [DOI] [PubMed] [Google Scholar]
- Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
- Wells J. A., Fairbrother W. J., Otlewski J., Laskowski M., Jr, Burnier J. A reinvestigation of a synthetic peptide (TrPepz) designed to mimic trypsin. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4110–4114. doi: 10.1073/pnas.91.10.4110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wentworth P., Datta A., Blakey D., Boyle T., Partridge L. J., Blackburn G. M. Toward antibody-directed "abzyme" prodrug therapy, ADAPT: carbamate prodrug activation by a catalytic antibody and its in vitro application to human tumor cell killing. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):799–803. doi: 10.1073/pnas.93.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wirsching P., Ashley J. A., Benkovic S. J., Janda K. D., Lerner R. A. An unexpectedly efficient catalytic antibody operating by ping-pong and induced fit mechanisms. Science. 1991 May 3;252(5006):680–685. doi: 10.1126/science.2024120. [DOI] [PubMed] [Google Scholar]