Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 15;93(21):11466–11470. doi: 10.1073/pnas.93.21.11466

Cloning of human acetyl-CoA carboxylase-beta and its unique features.

J Ha 1, J K Lee 1, K S Kim 1, L A Witters 1, K H Kim 1
PMCID: PMC38080  PMID: 8876158

Abstract

Acetyl-CoA carboxylase, which has a molecular mass of 265 kDa (ACC-alpha), catalyzes the rate-limiting step in the biosynthesis of long-chain fatty acids. In this study we report the complete amino acid sequence and unique features of an isoform of ACC with a molecular mass of 275 kDa (ACC-beta), which is primarily expressed in heart and skeletal muscles. In these tissues, ACC-beta may be involved in the regulation of fatty acid oxidation, rather than fatty acid biosynthesis. ACC-beta contains an amino acid sequence at the N terminus which is about 200 amino acids long and may be uniquely related to the role of ACC-beta in controlling carnitine palmitoyltransferase I activity and fatty acid oxidation by mitochondria. If we exclude this unique sequence at the N terminus the two forms of ACC show about 75% amino acid identity. All of the known functional domains of ACC are found in the homologous regions. Human ACC-beta cDNA has an open reading frame of 7,343 bases, encoding a protein of 2,458 amino acids, with a calculated molecular mass of 276,638 Da. The mRNA size of human ACC-beta is approximately 10 kb and is primarily expressed in heart and skeletal muscle tissues, whereas ACC-alpha mRNA is detected in all tissues tested. A fragment of ACC-beta cDNA was expressed in Escherichia coli and antibodies against the peptide were generated to establish that the cDNA sequence that we cloned is that for ACC-beta.

Full text

PDF
11466

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Elheiga L., Jayakumar A., Baldini A., Chirala S. S., Wakil S. J. Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4011–4015. doi: 10.1073/pnas.92.9.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aguan K., Scott J., See C. G., Sarkar N. H. Characterization and chromosomal localization of the human homologue of a rat AMP-activated protein kinase-encoding gene: a major regulator of lipid metabolism in mammals. Gene. 1994 Nov 18;149(2):345–350. doi: 10.1016/0378-1119(94)90174-0. [DOI] [PubMed] [Google Scholar]
  3. Allred J. B., Roman-Lopez C. R. Enzymatically inactive forms of acetyl-CoA carboxylase in rat liver mitochondria. Biochem J. 1988 May 1;251(3):881–885. doi: 10.1042/bj2510881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  5. Bertrand C., Largillière C., Zabot M. T., Mathieu M., Vianey-Saban C. Very long chain acyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid oxidation in fibroblasts. Biochim Biophys Acta. 1993 Jan 22;1180(3):327–329. doi: 10.1016/0925-4439(93)90058-9. [DOI] [PubMed] [Google Scholar]
  6. Bianchi A., Evans J. L., Iverson A. J., Nordlund A. C., Watts T. D., Witters L. A. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem. 1990 Jan 25;265(3):1502–1509. [PubMed] [Google Scholar]
  7. Coates P. M., Tanaka K. Molecular basis of mitochondrial fatty acid oxidation defects. J Lipid Res. 1992 Aug;33(8):1099–1110. [PubMed] [Google Scholar]
  8. Cook G. A. Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. J Biol Chem. 1984 Oct 10;259(19):12030–12033. [PubMed] [Google Scholar]
  9. Evans J. L., Witters L. A. Quantitation by immunoblotting of the in vivo induction and subcellular distribution of hepatic acetyl-CoA carboxylase. Arch Biochem Biophys. 1988 Jul;264(1):103–113. doi: 10.1016/0003-9861(88)90575-9. [DOI] [PubMed] [Google Scholar]
  10. Gao G., Widmer J., Stapleton D., Teh T., Cox T., Kemp B. E., Witters L. A. Catalytic subunits of the porcine and rat 5'-AMP-activated protein kinase are members of the SNF1 protein kinase family. Biochim Biophys Acta. 1995 Apr 6;1266(1):73–82. doi: 10.1016/0167-4889(94)00222-z. [DOI] [PubMed] [Google Scholar]
  11. Ha J., Daniel S., Broyles S. S., Kim K. H. Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem. 1994 Sep 2;269(35):22162–22168. [PubMed] [Google Scholar]
  12. Ha J., Daniel S., Kong I. S., Park C. K., Tae H. J., Kim K. H. Cloning of human acetyl-CoA carboxylase cDNA. Eur J Biochem. 1994 Jan 15;219(1-2):297–306. doi: 10.1111/j.1432-1033.1994.tb19941.x. [DOI] [PubMed] [Google Scholar]
  13. Iverson A. J., Bianchi A., Nordlund A. C., Witters L. A. Immunological analysis of acetyl-CoA carboxylase mass, tissue distribution and subunit composition. Biochem J. 1990 Jul 15;269(2):365–371. doi: 10.1042/bj2690365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kudo N., Barr A. J., Barr R. L., Desai S., Lopaschuk G. D. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem. 1995 Jul 21;270(29):17513–17520. doi: 10.1074/jbc.270.29.17513. [DOI] [PubMed] [Google Scholar]
  15. Lopaschuk G. D., Witters L. A., Itoi T., Barr R., Barr A. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem. 1994 Oct 14;269(41):25871–25878. [PubMed] [Google Scholar]
  16. López-Casillas F., Bai D. H., Luo X. C., Kong I. S., Hermodson M. A., Kim K. H. Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784–5788. doi: 10.1073/pnas.85.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McGarry J. D., Leatherman G. F., Foster D. W. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem. 1978 Jun 25;253(12):4128–4136. [PubMed] [Google Scholar]
  18. McGarry J. D., Mannaerts G. P., Foster D. W. Characteristics of fatty acid oxidation in rat liver homogenates and the inhibitory effect of malonyl-CoA. Biochim Biophys Acta. 1978 Sep 28;530(3):305–313. doi: 10.1016/0005-2760(78)90150-9. [DOI] [PubMed] [Google Scholar]
  19. McGarry J. D., Stark M. J., Foster D. W. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. J Biol Chem. 1978 Nov 25;253(22):8291–8293. [PubMed] [Google Scholar]
  20. McGarry J. D., Woeltje K. F., Kuwajima M., Foster D. W. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev. 1989 May;5(3):271–284. doi: 10.1002/dmr.5610050305. [DOI] [PubMed] [Google Scholar]
  21. McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
  22. Milatovich A., Plattner R., Heerema N. A., Palmer C. G., Lopez-Casillas F., Kim K. H. Localization of the gene for acetyl-CoA carboxylase to human chromosome 17. Cytogenet Cell Genet. 1988;48(3):190–192. doi: 10.1159/000132623. [DOI] [PubMed] [Google Scholar]
  23. Murthy M. S., Pande S. V. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A. 1987 Jan;84(2):378–382. doi: 10.1073/pnas.84.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pande S. V., Murthy M. S. Carnitine-acylcarnitine translocase deficiency: implications in human pathology. Biochim Biophys Acta. 1994 Jul 18;1226(3):269–276. doi: 10.1016/0925-4439(94)90037-x. [DOI] [PubMed] [Google Scholar]
  25. Roman-Lopez C. R., Allred J. B. Acute alloxan diabetes alters the activity but not the total quantity of acetyl CoA carboxylase in rat liver. J Nutr. 1987 Nov;117(11):1976–1981. doi: 10.1093/jn/117.11.1976. [DOI] [PubMed] [Google Scholar]
  26. Saddik M., Gamble J., Witters L. A., Lopaschuk G. D. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993 Dec 5;268(34):25836–25845. [PubMed] [Google Scholar]
  27. Song C. S., Kim K. H. Reevaluation of properties of acetyl-CoA carboxylase from rat liver. J Biol Chem. 1981 Aug 10;256(15):7786–7788. [PubMed] [Google Scholar]
  28. Tae H. J., Zhang S., Kim K. H. cAMP activation of CAAT enhancer-binding protein-beta gene expression and promoter I of acetyl-CoA carboxylase. J Biol Chem. 1995 Sep 15;270(37):21487–21494. doi: 10.1074/jbc.270.37.21487. [DOI] [PubMed] [Google Scholar]
  29. Thampy K. G. Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. J Biol Chem. 1989 Oct 25;264(30):17631–17634. [PubMed] [Google Scholar]
  30. Trumble G. E., Smith M. A., Winder W. W. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur J Biochem. 1995 Jul 1;231(1):192–198. doi: 10.1111/j.1432-1033.1995.tb20686.x. [DOI] [PubMed] [Google Scholar]
  31. Trumble G. E., Smith M. A., Winder W. W. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur J Biochem. 1995 Jul 1;231(1):192–198. doi: 10.1111/j.1432-1033.1995.tb20686.x. [DOI] [PubMed] [Google Scholar]
  32. Verhoeven A. J., Woods A., Brennan C. H., Hawley S. A., Hardie D. G., Scott J., Beri R. K., Carling D. The AMP-activated protein kinase gene is highly expressed in rat skeletal muscle. Alternative splicing and tissue distribution of the mRNA. Eur J Biochem. 1995 Mar 1;228(2):236–243. [PubMed] [Google Scholar]
  33. Widmer J., Fassihi K. S., Schlichter S. C., Wheeler K. S., Crute B. E., King N., Nutile-McMenemy N., Noll W. W., Daniel S., Ha J. Identification of a second human acetyl-CoA carboxylase gene. Biochem J. 1996 Jun 15;316(Pt 3):915–922. doi: 10.1042/bj3160915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhang S., Kim K. H. Glucose activation of acetyl-CoA carboxylase in association with insulin secretion in a pancreatic beta-cell line. J Endocrinol. 1995 Oct;147(1):33–41. doi: 10.1677/joe.0.1470033. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES