Abstract
The spores of a strain of Fusarium solani 1-dehydrogenate ring A and cleave the 17β-acetyl side chain of 17α-hydroxypregn-4-ene-3,20-dione (17α-hydroxyprogesterone) to give 17α-hydroxypregna-1,4-diene-3,20-dione (the 1-dehydro analogue) and little androsta-1,4-diene-3,4-diene-3,17-dione (androstadienedione). A 4-h lag period is observed in the course of metabolism, and there are no requirements for external additives. Exoenzymes or surface enzymes bound to the cell outside the plasma membrane, either in the periplasmic space or bound to the cell wall, cannot be detected. The spore activity is not destroyed by treatment with aqueous HCl (pH 1.50), indicating that the 1-dehydrogenation and side-chain degradation enzymes are located away from the surface of the spores. Phenethyl alcohol destroys the spore permeability barriers, and it is also likely that it exposes its enzymes to acid inactivation. The action of phenethyl alcohol is reversible at low concentrations and irreversible at high concentrations. This investigation shows that: (i) the spore 1-dehydrogenating and side-chain-degrading enzymes appear to be bound to, or imbedded in, the plasma membrane; (ii) the lag period observed in the course of metabolism of the steroid by the spores might be required for enzyme activation or diffusion of the substrate through the cell wall; and (iii) the internal metabolities of the spores, that might be required for the conversion process, appear to be present in a nondiffusible form or bound to intrasporal macromolecules.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Casas-Campillo C., Bautista M. Microbiological aspects in the hydroxylation of estrogens by Fusarium moniliforme. Appl Microbiol. 1965 Nov;13(6):977–984. doi: 10.1128/am.13.6.977-984.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberhart B. M., Beck R. S. Localization of the beta-glucosidases in Neurospora crassa. J Bacteriol. 1970 Feb;101(2):408–417. doi: 10.1128/jb.101.2.408-417.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEHRIG R. F., KNIGHT S. G. Formation of ketones from fatty acids by spores of Penicillium roqueforti. Nature. 1958 Nov 1;182(4644):1237–1237. doi: 10.1038/1821237a0. [DOI] [PubMed] [Google Scholar]
- GERHARDT P., JUDGE J. A. POROSITY OF ISOLATED CELL WALLS OF SACCHAROMYCES CEREVISIAE AND BACILLUS MEGATERIUM. J Bacteriol. 1964 Apr;87:945–951. doi: 10.1128/jb.87.4.945-951.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hafez-Zedan H., Plourde R. "Spore plate method" for transformation of steroids by fungal spores entrapped in silica gel g. Appl Microbiol. 1971 May;21(5):815–819. doi: 10.1128/am.21.5.815-819.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IIDA M., TOWNSLEY J. D., HAYANO M., BRODIE H. J. PREPARATION AND PROPERTIES OF A CELL-FREE ENZYME SYSTEM POSSESSING BOTH STEROID HYDROGENASE AND DEHYDROGENASE ACTIVITIES. Steroids. 1965;58:SUPPL 1–1:173. [PubMed] [Google Scholar]
- LAMPEN J. O., MORGAN E. R., SLOCUM A., ARNOW P. Absorption of nystatin by microorganisms. J Bacteriol. 1959 Aug;78:282–289. doi: 10.1128/jb.78.2.282-289.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence R. C. The metabolism of triglycerides by spores of Penicillium roqueforti. J Gen Microbiol. 1967 Jan;46(1):65–70. doi: 10.1099/00221287-46-1-65. [DOI] [PubMed] [Google Scholar]
- Lawrence R. C. The oxidation of fatty acids by spores of penicillium roqueforti. J Gen Microbiol. 1966 Sep;44(3):393–405. doi: 10.1099/00221287-44-3-393. [DOI] [PubMed] [Google Scholar]
- MANDELS G. R. Localization of carbohydrases at the surface of fungus spores by acid treatment. Exp Cell Res. 1953 Sep;5(1):48–55. doi: 10.1016/0014-4827(53)90093-7. [DOI] [PubMed] [Google Scholar]
- MANDELS G. R. The properties and surface location of an enzyme oxidizing ascorbic acid in fungus spores. Arch Biochem Biophys. 1953 Jan;42(1):164–173. doi: 10.1016/0003-9861(53)90249-5. [DOI] [PubMed] [Google Scholar]
- METZENBERG R. L. THE LOCALIZATION OF BETA-FRUCTOFURANOSIDASE IN NEUROSPORA. Biochim Biophys Acta. 1963 Nov 8;77:455–465. doi: 10.1016/0006-3002(63)90521-3. [DOI] [PubMed] [Google Scholar]
- Mandels G. R., Vitols R. Constitutive and induced trehalose transport mechanisms in spores of the fungus Myrothecium verrucaria. J Bacteriol. 1967 Jan;93(1):159–167. doi: 10.1128/jb.93.1.159-167.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manocha M. S., Colvin J. R. Structure and composition of the cell wall of Neurospora crassa. J Bacteriol. 1967 Jul;94(1):202–212. doi: 10.1128/jb.94.1.202-212.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marquis R. E. Salt-induced contraction of bacterial cell walls. J Bacteriol. 1968 Mar;95(3):775–781. doi: 10.1128/jb.95.3.775-781.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PRAIRIE R. L., TALALAY P. Enzymatic formation of testololactone. Biochemistry. 1963 Jan-Feb;2:203–208. doi: 10.1021/bi00901a039. [DOI] [PubMed] [Google Scholar]
- Plourde R., el-Tayeb O. M., Hafez-Zedan H. Reduction of the 20-carbonyl group of C-21 steroids by spores of Fusarium solani and other microorganisms. I. Side-chain degradation, epoxide cleavage, and substrate specificity. Appl Microbiol. 1972 Mar;23(3):601–612. doi: 10.1128/am.23.3.601-612.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rahm M. A., Sih C. J. Mechanisms of steroid oxidation by microorganisms. XI. Enzymatic cleavage of the pregnane side chain. J Biol Chem. 1966 Aug 10;241(15):3615–3623. [PubMed] [Google Scholar]
- SINGH K., SEHGAL S. N., VEZINA C. TRANSFORMATION OF REICHSTEIN'S COMPOUND 'S' AND OXIDATION OF CARBOHYDRATES BY SPORES OF SEPTOMYXA AFFINIS. Can J Microbiol. 1965 Apr;11:351–364. doi: 10.1139/m65-043. [DOI] [PubMed] [Google Scholar]
- Scott W. A., Metzenberg R. L. Location of Aryl Sulfatase in Conidia and Young Mycelia of Neurospora crassa. J Bacteriol. 1970 Dec;104(3):1254–1265. doi: 10.1128/jb.104.3.1254-1265.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver S., Wendt L. Mechanism of action of phenethyl alcohol: breakdown of the cellular permeability barrier. J Bacteriol. 1967 Feb;93(2):560–566. doi: 10.1128/jb.93.2.560-566.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh K., Sehgal S. N., Vézina C. Transformation of steroids by Mucor griseo-cyanus. Can J Microbiol. 1967 Sep;13(9):1271–1281. doi: 10.1139/m67-172. [DOI] [PubMed] [Google Scholar]
- Trevithick J. R., Metzenberg R. L. Genetic alteration of pore size and other properties of the Neurospora cell wall. J Bacteriol. 1966 Oct;92(4):1016–1020. doi: 10.1128/jb.92.4.1016-1020.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trevithick J. R., Metzenberg R. L. Molecular sieving by Neurospora cell walls during secretion of invertase isozymes. J Bacteriol. 1966 Oct;92(4):1010–1015. doi: 10.1128/jb.92.4.1010-1015.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VEZINA C., SEHGAL S. N., SINGH K. Transformation of steroids by spores of microorganisms. I. Hydroxylation of progesterone by conidia of Aspergillus ochraceus. Appl Microbiol. 1963 Jan;11:50–57. doi: 10.1128/am.11.1.50-57.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vézina C., Sehgal S. N., Singh K. Transformation of organic compounds by fungal spores. Adv Appl Microbiol. 1968;10:221–268. doi: 10.1016/s0065-2164(08)70193-x. [DOI] [PubMed] [Google Scholar]
