Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 15;93(21):11622–11627. doi: 10.1073/pnas.93.21.11622

Interplay of structure and disorder in cochaperonin mobile loops.

S J Landry 1, A Taher 1, C Georgopoulos 1, S M van der Vies 1
PMCID: PMC38108  PMID: 8876186

Abstract

Protein-protein interactions typically are characterized by highly specific interfaces that mediate binding with precisely tuned affinities. Binding of the Escherichia coli cochaperonin GroES to chaperonin GroEL is mediated, at least in part, by a mobile polypeptide loop in GroES that becomes immobilized in the GroEL/GroES/nucleotide complex. The bacteriophage T4 cochaperonin Gp31 possesses a similar highly flexible polypeptide loop in a region of the protein that shows low, but significant, amino acid similarity with GroES and other cochaperonins. When bound to GroEL, a synthetic peptide representing the mobile loop of either GroES or Gp31 adopts a characteristic bulged hairpin conformation as determined by transferred nuclear Overhauser effects in NMR spectra. Thermodynamic considerations suggest that flexible disorder in the cochaperonin mobile loops moderates their affinity for GroEL to facilitate cycles of chaperonin-mediated protein folding.

Full text

PDF
11622

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T. Protein-DNA interactions: how GCN4 binds DNA. Curr Biol. 1993 Mar;3(3):182–184. doi: 10.1016/0960-9822(93)90268-s. [DOI] [PubMed] [Google Scholar]
  2. Baldwin R. L. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8069–8072. doi: 10.1073/pnas.83.21.8069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boisvert D. C., Wang J., Otwinowski Z., Horwich A. L., Sigler P. B. The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat Struct Biol. 1996 Feb;3(2):170–177. doi: 10.1038/nsb0296-170. [DOI] [PubMed] [Google Scholar]
  4. Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 1994 Oct 13;371(6498):578–586. doi: 10.1038/371578a0. [DOI] [PubMed] [Google Scholar]
  5. Chen S., Roseman A. M., Hunter A. S., Wood S. P., Burston S. G., Ranson N. A., Clarke A. R., Saibil H. R. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature. 1994 Sep 15;371(6494):261–264. doi: 10.1038/371261a0. [DOI] [PubMed] [Google Scholar]
  6. Clackson T., Wells J. A. A hot spot of binding energy in a hormone-receptor interface. Science. 1995 Jan 20;267(5196):383–386. doi: 10.1126/science.7529940. [DOI] [PubMed] [Google Scholar]
  7. Engel A., Hayer-Hartl M. K., Goldie K. N., Pfeifer G., Hegerl R., Müller S., da Silva A. C., Baumeister W., Hartl F. U. Functional significance of symmetrical versus asymmetrical GroEL-GroES chaperonin complexes. Science. 1995 Aug 11;269(5225):832–836. doi: 10.1126/science.7638600. [DOI] [PubMed] [Google Scholar]
  8. Fenton W. A., Kashi Y., Furtak K., Horwich A. L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 1994 Oct 13;371(6498):614–619. doi: 10.1038/371614a0. [DOI] [PubMed] [Google Scholar]
  9. Frankel A. D., Kim P. S. Modular structure of transcription factors: implications for gene regulation. Cell. 1991 May 31;65(5):717–719. doi: 10.1016/0092-8674(91)90378-c. [DOI] [PubMed] [Google Scholar]
  10. Georgopoulos C. P., Hendrix R. W., Kaiser A. D., Wood W. B. Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly. Nat New Biol. 1972 Sep 13;239(89):38–41. doi: 10.1038/newbio239038a0. [DOI] [PubMed] [Google Scholar]
  11. Gettins P., Cunningham L. W. Identification of 1H resonances from the bait region of human alpha 2-macroglobulin and effects of proteases and methylamine. Biochemistry. 1986 Sep 9;25(18):5011–5017. doi: 10.1021/bi00366a007. [DOI] [PubMed] [Google Scholar]
  12. Hayer-Hartl M. K., Martin J., Hartl F. U. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science. 1995 Aug 11;269(5225):836–841. doi: 10.1126/science.7638601. [DOI] [PubMed] [Google Scholar]
  13. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  14. Hunt J. F., Weaver A. J., Landry S. J., Gierasch L., Deisenhofer J. The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature. 1996 Jan 4;379(6560):37–45. doi: 10.1038/379037a0. [DOI] [PubMed] [Google Scholar]
  15. Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
  16. Keppel F., Lipinska B., Ang D., Georgopoulos C. Mutational analysis of the phage T4 morphogenetic 31 gene, whose product interacts with the Escherichia coli GroEL protein. Gene. 1990 Jan 31;86(1):19–25. doi: 10.1016/0378-1119(90)90109-5. [DOI] [PubMed] [Google Scholar]
  17. Koonin E. V., van der Vies S. M. Conserved sequence motifs in bacterial and bacteriophage chaperonins. Trends Biochem Sci. 1995 Jan;20(1):14–15. doi: 10.1016/s0968-0004(00)88941-0. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K., Beguin F., Gujer-Kellenberger G. A factor preventing the major head protein of bacteriophage T4 from random aggregation. J Mol Biol. 1970 Jan 14;47(1):69–85. doi: 10.1016/0022-2836(70)90402-x. [DOI] [PubMed] [Google Scholar]
  19. Landry S. J., Gierasch L. M. Polypeptide interactions with molecular chaperones and their relationship to in vivo protein folding. Annu Rev Biophys Biomol Struct. 1994;23:645–669. doi: 10.1146/annurev.bb.23.060194.003241. [DOI] [PubMed] [Google Scholar]
  20. Landry S. J., Zeilstra-Ryalls J., Fayet O., Georgopoulos C., Gierasch L. M. Characterization of a functionally important mobile domain of GroES. Nature. 1993 Jul 15;364(6434):255–258. doi: 10.1038/364255a0. [DOI] [PubMed] [Google Scholar]
  21. Langer T., Pfeifer G., Martin J., Baumeister W., Hartl F. U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 1992 Dec;11(13):4757–4765. doi: 10.1002/j.1460-2075.1992.tb05581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lycksell P. O., Ingemarson R., Davis R., Gräslund A., Thelander L. 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1. Biochemistry. 1994 Mar 15;33(10):2838–2842. doi: 10.1021/bi00176a013. [DOI] [PubMed] [Google Scholar]
  23. Mande S. C., Mehra V., Bloom B. R., Hol W. G. Structure of the heat shock protein chaperonin-10 of Mycobacterium leprae. Science. 1996 Jan 12;271(5246):203–207. doi: 10.1126/science.271.5246.203. [DOI] [PubMed] [Google Scholar]
  24. Martin J., Mayhew M., Langer T., Hartl F. U. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature. 1993 Nov 18;366(6452):228–233. doi: 10.1038/366228a0. [DOI] [PubMed] [Google Scholar]
  25. Mayhew M., da Silva A. C., Martin J., Erdjument-Bromage H., Tempst P., Hartl F. U. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature. 1996 Feb 1;379(6564):420–426. doi: 10.1038/379420a0. [DOI] [PubMed] [Google Scholar]
  26. Mott H. R., Campbell I. D. Four-helix bundle growth factors and their receptors: protein-protein interactions. Curr Opin Struct Biol. 1995 Feb;5(1):114–121. doi: 10.1016/0959-440x(95)80016-t. [DOI] [PubMed] [Google Scholar]
  27. Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 1988 Mar 14;229(2):317–324. doi: 10.1016/0014-5793(88)81148-7. [DOI] [PubMed] [Google Scholar]
  28. Pontius B. W. Close encounters: why unstructured, polymeric domains can increase rates of specific macromolecular association. Trends Biochem Sci. 1993 May;18(5):181–186. doi: 10.1016/0968-0004(93)90111-y. [DOI] [PubMed] [Google Scholar]
  29. Saibil H. R. How chaperones tell wrong from right. Nat Struct Biol. 1994 Dec;1(12):838–842. doi: 10.1038/nsb1294-838. [DOI] [PubMed] [Google Scholar]
  30. Saibil H., Dong Z., Wood S., auf der Mauer A. Binding of chaperonins. Nature. 1991 Sep 5;353(6339):25–26. doi: 10.1038/353025b0. [DOI] [PubMed] [Google Scholar]
  31. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  32. Sibanda B. L., Thornton J. M. Conformation of beta hairpins in protein structures: classification and diversity in homologous structures. Methods Enzymol. 1991;202:59–82. doi: 10.1016/0076-6879(91)02007-v. [DOI] [PubMed] [Google Scholar]
  33. Takano T., Kakefuda T. Involvement of a bacterial factor in morphogenesis of bacteriophage capsid. Nat New Biol. 1972 Sep 13;239(89):34–37. doi: 10.1038/newbio239034a0. [DOI] [PubMed] [Google Scholar]
  34. Todd M. J., Viitanen P. V., Lorimer G. H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science. 1994 Jul 29;265(5172):659–666. doi: 10.1126/science.7913555. [DOI] [PubMed] [Google Scholar]
  35. Weissman J. S., Kashi Y., Fenton W. A., Horwich A. L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell. 1994 Aug 26;78(4):693–702. doi: 10.1016/0092-8674(94)90533-9. [DOI] [PubMed] [Google Scholar]
  36. Weissman J. S., Rye H. S., Fenton W. A., Beechem J. M., Horwich A. L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell. 1996 Feb 9;84(3):481–490. doi: 10.1016/s0092-8674(00)81293-3. [DOI] [PubMed] [Google Scholar]
  37. Zeilstra-Ryalls J., Fayet O., Georgopoulos C. The universally conserved GroE (Hsp60) chaperonins. Annu Rev Microbiol. 1991;45:301–325. doi: 10.1146/annurev.mi.45.100191.001505. [DOI] [PubMed] [Google Scholar]
  38. Zeilstra-Ryalls J., Fayet O., Georgopoulos C. Two classes of extragenic suppressor mutations identify functionally distinct regions of the GroEL chaperone of Escherichia coli. J Bacteriol. 1994 Nov;176(21):6558–6565. doi: 10.1128/jb.176.21.6558-6565.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van der Vies S. M., Gatenby A. A., Georgopoulos C. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding. Nature. 1994 Apr 14;368(6472):654–656. doi: 10.1038/368654a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES