Skip to main content
BMJ Open Access logoLink to BMJ Open Access
. 2013 Jul 18;50(11):715–724. doi: 10.1136/jmedgenet-2013-101754

Advances in osteoarthritis genetics

Kalliope Panoutsopoulou 1, Eleftheria Zeggini 1
PMCID: PMC3812881  PMID: 23868913

Abstract

Osteoarthritis (OA), the most common form of arthritis, is a highly debilitating disease of the joints and can lead to severe pain and disability. There is no cure for OA. Current treatments often fail to alleviate its symptoms leading to an increased demand for joint replacement surgery. Previous epidemiological and genetic research has established that OA is a multifactorial disease with both environmental and genetic components. Over the past 6 years, a candidate gene study and several genome-wide association scans (GWAS) in populations of Asian and European descent have collectively established 15 loci associated with knee or hip OA that have been replicated with genome-wide significance, shedding some light on the aetiogenesis of the disease. All OA associated variants to date are common in frequency and appear to confer moderate to small effect sizes. Some of the associated variants are found within or near genes with clear roles in OA pathogenesis, whereas others point to unsuspected, less characterised pathways. These studies have also provided further evidence in support of the existence of ethnic, sex, and joint specific effects in OA and have highlighted the importance of expanded and more homogeneous phenotype definitions in genetic studies of OA.

Keywords: Osteoarthritis, Genetics

Introduction

Osteoarthritis (OA) is a set of disorders of the musculoskeletal system characterised by degradation and loss of articular cartilage in synovial joints most commonly of the knee, hip, hand, foot, and spine. OA development appears to be a result of a complex set of interactions between mechanical, biological, biochemical, and molecular factors that destabilise the normal coupling of degradation and synthesis of articular cartilage chondrocytes and extracellular matrix, and subchondral bone. Although OA invariably involves articular cartilage, it affects all tissues of the joint; loss of articular cartilage is accompanied by subchondral bone remodelling with sclerosis and in many instances cysts, osteophyte formation at joint margins, ligamentous contractures and relaxation, muscle atrophy and spasms, and at clinical stages of the disease inflammation of the synovial membrane.1 2

The health and socioeconomic burden posed by OA is substantial. The main symptom of OA is pain and loss of physical function leading to impaired mobility and impaired quality of life.3 Current regimens for OA management are multimodal in nature—that is, a combination of pharmacologic and non-pharmacologic treatments.2 However, these are often ineffective in targeting the main disease symptom leading to an increased demand for total joint replacement (TJR).4 OA is the most prevalent form of arthritis affecting over 40% of people over the age of 70,5 and its incidence is on the rise. In the USA alone 27 million adults had clinical evidence of OA in 2005, a rise of nearly 30% from the estimate of 21 million in 1995.6 7 With longer life expectancies and the obesity pandemic—with age and obesity/overweight being well established risk factors for disease development and progression—the prevalence of OA is expected to increase continuously and sharply.

Although the aetiology of OA is not fully understood it has been well established that the disease is caused by complex interplay between environmental and genetic factors. Age is the strongest risk factor for all types of OA whereas obesity appears to confer the greatest risk in knee OA, particularly among women. Epidemiological research also suggests that occupational physical workload, high sporting activity, joint injuries and being female may increase the risk of developing OA at particular joints (reviewed in Altman,2 and Bierma-Zeinstra and Koes8).

Genetic studies in OA

The pre-genome-wide association scans era

Twin pair, sibling risk and segregation studies conducted in Europe and the USA have demonstrated a substantial genetic component for OA that is transmitted in a non-Mendelian manner, which is typical of multifactorial diseases. Heritability estimates range between 40–65%, with precise estimates varying depending on gender, affected joint, and severity of the disease, but overall appear stronger for hand and hip OA than for knee OA.9 10 Familial aggregation studies in the UK have estimated that the sibling recurrence risk (λs)—which indicates the disease risk of a sibling to an individual with OA compared to the disease prevalence in the general population—is ∼5.10 The notion that OA is simply a wear-and-tear disease of old age was largely superseded and these epidemiological studies provided a firm foundation for considerable genetic research aimed at identifying genetic loci responsible for OA susceptibility.

To date five genome-wide linkage scans performed on individuals collected in the UK, Finland, Iceland, and the USA have been published for OA but had limited success.10 Gene centric association studies, commonly known as candidate gene studies, have been extensively applied in populations of European and Asian ancestry to survey variants across genes believed to be implicated in OA based on prior biological knowledge. The majority of reported associations, however, have been either false positives—due to small sample sizes, lack of replication and lack of stringency in the reporting of significant results based on observed p values—or have yielded only suggestive evidence for association; that is, replication in at least one other study but not meeting genome-wide significance defined as p<5×10−8 (for examples, see Valdes and Spector10). A notable exception of the success of the candidate gene sequencing approach in OA is the robust and reproducible association of rs143383 in the growth differentiation factor 5 (GDF5) gene,11–13 discussed in more detail below.

The genome-wide association scans era

In the last decade, the Human Genome and International HapMap Projects have revolutionised the field of common complex disease genetics by providing an extensive catalogue of genome sequence variation and linkage disequilibrium (LD) patterns between common variants. This has enabled the selection of tag single nucleotide polymorphisms (tag SNPs)—a set of informative, non-redundant markers capturing the majority of common variations across the genome—which led to the development of high throughput genotyping platforms in which hundreds of thousands of SNPs can be concurrently examined for association with disease. In recent years, this hypothesis-free approach of interrogating common variation in a genome-wide manner dominated the field of human genetics and led to the identification of numerous novel associations with several common complex diseases and traits.14 OA was relatively late to enter the genome-wide association scans (GWAS) era but the returns were substantial; two novel associations from studies in individuals of Asian origin,15 16 and 12 novel associations from scans performed in individuals of European ancestry,17–22 were detected with genome-wide significance bringing the total of established OA loci to 15 (table 1). This review considers all associations with OA that have surpassed or have approached closely the stringent threshold of genome-wide significance following replication in at least one independent dataset. Extensive fine mapping and functional studies are required to identify the causal variants and precise genes involved in OA pathogenesis.

Table 1.

Genetic associations with osteoarthritis established with genome-wide significance following replication in at least one independent dataset

SNP Nearest* gene(s) EA EAF OR, 95% CI p Value Site Sex Ethnic group Source
rs143383† GDF5 T 0.74 1.79,1.53 to 2.09 2×10−13 Hip Both Asian 11
rs143383† GDF5 T NA 1.16, 1.11 to 1.22 8.3×10−09 Knee Both European 13
rs7639618 DVWA G 0.63 1.43, 1.28 to 1.59 7.3×10−11 Knee Both Asian 15
rs7775228‡ HLA-DQB1 T 0.62 1.34, 1.21 to 1.49 2.4×10−08 Knee Both Asian 16
rs10947262‡ BTNL2 C 0.58 1.31, 1.20 to 1.44 5.1×10−09 Knee Both Asian and European 16
rs3815148§ COG5 C 0.23 1.14, 1.09 to 1.19 8×10−08 Knee and hand Both European 17
rs4730250§ DUS4L G 0.17 1.17, 1.11 to 1.24 9.2×10−9 Knee Both European 18
rs11842874 MCF2L A 0.93 1.17, 1.11 to 1.23 2.1×10−08 Knee and hip Both European 19
rs6976** GLT8D1†† T 0.37 1.12, 1.08 to 1.16 7.2×10−11 Hip and knee Both European 20
rs11177** GNL3†† A 0.38 1.12, 1.08 to 1.16 1.3×10−10 Hip and knee Both European 20
rs4836732 ASTN2 C 0.47 1.2, 1.13 to 1.27 6.1×10−10 Hip Females European 20
rs9350591 FILIP1; SENP6 T 0.11 1.18, 1.12 to 1.25 2.4×10−09 Hip Both European 20
rs10492367 KLHDC5; PTHLH T 0.19 1.14, 1.09 to 1.20 1.5×10−08 Hip Both European 20
rs835487 CHST11 G 0.34 1.13, 1.09 to 1.18 1.6×10−08 Hip Both European 20
rs12107036 TP63 G 0.52 1.21, 1.13 to 1.29 6.7×10−08 Knee Females European 20
rs8044769‡‡ FTO C 0.5 1.11, 1.07 to 1.15 6.9×10−08 Hip and knee Females European 20
rs10948172 SUPT3H; CDC5L G 0.29 1.14, 1.09 to 1.20 7.9×10−08 Hip and knee Males European 20
rs6094710 NCOA3 A 0.04 1.28, 1.18 to 1.39 7.9×10−9 Hip Both European 22
rs12982744 DOT1L C NA 1.17, 1.11 to 1.23 7.8×10−9 Hip Males European 21

*Nearest gene(s) only shown.

†Summary statistics of the same SNP in separate studies in Asians and Europeans, respectively.

‡SNPs in strong linkage disequilibrium.

§SNPS in strong linkage disequilibrium.

¶chr7q22 locus encompasses more genes than shown here, for full details see Kerkhof et al17 and Day-Williams et al.19

**SNPs in strong linkage disequilibrium.

††chr3p21.1 locus encompasses more genes than shown here, for full details see arcOGEN Consortium.20

‡‡This signal was attenuated after BMI adjustment, suggesting that the FTO locus exerts its effect on OA through obesity.

BMI, body mass index; EA, Effect allele; EAF, effect allele frequency; OA, osteoarthritis; SNP, single nucleotide polymorphism.

Genetic architecture of OA

In line with other common complex disorders the genetic architecture of OA appears to be highly polygenic with multiple variants across the full allele frequency spectrum contributing modest and small effects. The theory of a polygenic inheritance model for OA was first tested by the arcOGEN Consortium in a GWAS of 3177 cases and 4984 population based controls from the UK.23 Using analytical approaches previously applied to test the polygenic inheritance of schizophrenia and bipolar disorder,24 a set of independent associated SNPs was derived from a subset of the data (90% of arcOGEN samples); this score allele set was then used to evaluate the proportion of case–control status accounted for in the remaining samples (10% of arcOGEN samples). These analyses revealed a substantial genetic component to OA comprising multiple contributing variants with small effect sizes.

OA established loci

GDF5

In the only candidate gene study that yielded a strong reproducible association with OA thus far, Miyamoto et al,11 searched for sequence variations in the exons and flanking regions of the GDF5 gene and identified the rs143383 polymorphism—a T to C transition located in the 5′ untranslated region (5′UTR) of the gene—to be significantly associated with hip OA. Combined evidence for association in two independent Japanese populations reached genome-wide significance with p=2×10−13 and allelic odds ratio (OR) of 1.79 (95% CI 1.53 to 2.09) (table 1). Evidence for association with knee OA was weaker in datasets from China (p=3×10−4) and Japan (p=0.002).11 A large scale meta-analysis employing 4791 hip OA cases and 6006 controls, and 4367 knee OA cases and 6291 controls,12 showed that in samples of European descent there was less compelling evidence for association with hip OA (OR=1.07, 95% CI 1.01 to 1.14; p=0.034) and more compelling evidence for association with knee OA (OR=1.13, 95% CI 1.06 to 1.20; p=9×10−5), but with a much weaker effect size than the East Asian set. These differences can be ascribed to allele frequency disparities between ethnic groups. The GDF5 SNP was eventually found to be genome-wide significantly associated with knee OA in Europeans in a subsequent meta-analysis across a total of 6861 knee OA cases and 10 103 controls (table 1).13 Genetic variation in the GDF5 locus has also been robustly associated with height variation,25 and linked with suggestive significance to lumbar disc degeneration,26 fracture risk,27 congenital dislocation of the hip,28 29 and Achilles tendon pathology,30 suggesting a pleiotropic effect from this gene.

GDF5, alternatively known as cartilage derived morphogenetic protein 1 or bone morphogenetic protein 14, is an extracellular signalling molecule, a member of the transforming growth factor (TGF-β) superfamily. Differential allelic expression analysis supported a functional role of the rs143383 polymorphism with the risk allele (T) mediating reduced GDF5 transcription relative to the C allele.11 31 Further studies in joint tissues (cartilage, synovium, meniscus, ligament, tendon, and fat pad) obtained from individuals undergoing elective joint replacement for OA demonstrated a consistent allelic expression imbalance in all tissues tested, implying that the functional effect mediated by rs143383 on GDF5 expression is joint-wide.32 The role of GDF5 in the development, maintenance, and repair of bone, cartilage, and other tissues of the synovial joint has been extensively reviewed.33–37 Mutations in the GDF5 gene have been previously implicated in a broad spectrum of skeletal disorders in humans (for an overview see Cornelis et al33) and mice.38–44

DVWA

Through a GWAS interrogating ∼100 000 SNPs, Miyamoto et al15 identified a previously unknown gene on chromosome 3p24.3, DVWA, to be associated with susceptibility to knee osteoarthritis in Japanese individuals. The association of rs7639618—a missense SNP—was replicated in additional Japanese and Han Chinese cohorts with p=7.3×10−11 and OR=1.43 (95% CI 1.28 to 1.59) (table 1).

DVWA encodes a 276 amino-acid protein with two regions corresponding to the von Willebrand factor type A domain (VWA domain). DVWA expression studies in various human tissues revealed highest expression in cartilage tissues from both controls and individuals with OA suggesting that DVWA function is associated with cartilage.15 Mutations in the VWA domains of a different gene (MATN3) have been previously associated with hand OA in an Icelandic linkage scan,45 and with multiple epiphyseal dysplasia.46 DVWA protein binds to β-tubulin, and the binding is weakened when the risk alleles at two highly associated missense SNPs (allele G at rs7639618 and allele T at rs11718863, both located in the VWA domain) form a haplotype (Tyr169-Cys260) that was found to be overrepresented in OA cases of the discovery GWAS.15 These findings led to speculation that DVWA supports intracellular transport and affects OA susceptibility by modulating the chondrogenic function of β-tubulin.

HLA class II/III locus

A GWAS and replication study across ~4800 Japanese individuals identified two strongly correlated variants in a region containing human leucocyte antigen (HLA) class II/III genes that were significantly associated with susceptibility to knee OA (p=2.43×10−8, OR=1.34, 95% CI 1.21 to 1.49 for rs7775228; p=6.73×10−8, OR=1.32, 95% 1.19 to 1.46 for rs10947262) (table 1).16 Only rs10947262 replicated in two European populations with combined estimates of OR=1.31 (95% CI 1.20 to 1.44) and p=5.10×10−9. Thus far, these associations have not be generalised to other Asian or European populations as these variants failed to replicate in a population of Han Chinese and in a large scale European meta-analysis, from which it appears that they do not tag the same HLA class II haplotype as they do in Japanese individuals.47 48

These associations nevertheless strengthen the evidence that immunologic mechanisms are implicated in the aetiology of OA. The two SNPs, rs7775228 and rs10947262, are located between the upstream region of HLA-DQA2 and HLA-DQB1 and within intron 1 of BTNL2 respectively, but it should be noted that the HLA region is characterised by extensive linkage disequilibrium making it very difficult to pinpoint the precise genes. HLA class II molecules are expressed in antigen presenting cells and have a central role in the immune system by presenting peptides derived from extracellular proteins. HLA class I and class II genes code for proteins that are highly polymorphic and have been implicated in the susceptibility to many disorders, including arthropathies such as rheumatoid arthritis.49 BTNL2 encodes butyrophilin-like 2 which is thought to regulate T cell activation.50 Activated T cells and Th1 cytokine transcripts are present in chronic joint lesions of OA patients, suggesting that T cells could be contributing to chronic inflammation.51 52 Interaction between T cells and chondrocytes through cell surface molecules such as HLA, CD4 or CD8 has been shown in OA.51 Peripheral blood T cells from OA patients compared to normal donors show significantly higher proliferative responses to autologous chondrocytes.52

Chr7q22 locus

The first novel locus for OA that reached genome-wide significance in Europeans was reported by a GWAS in Dutch individuals in a gene dense region on chromosome 7q22.17 Following large scale replication, allele C at rs3815148 was found to be associated with knee and/or hand OA with p=8×10−8 and OR=1.14 (95% CI 1.09 to 1.19) (table 1). The association with knee OA was further corroborated and reinforced by a meta-analysis across four other GWAS (deCODE, Rotterdam, Framingham, TwinsUK) performed under the auspices of the TreatOA Consortium.18

The chr7q22 locus harbours six genes, PRKAR2B, HPB1, COG5, GPR22, DUS4L, and BCAP29, within a large linkage disequilibrium block making it difficult to pin down the culprit gene. Since the GPR22 gene encodes a G-protein coupled receptor which is an attractive, potential drug target, this gene was taken forward for functional analysis. Immunohistochemistry experiments showed that the GPR22 protein was present in cartilage and osteophytes in OA mouse models but absent from normal cartilage, providing some indication that GPR22 could be the causal gene.17 Further gene expression studies using joint tissues from OA patients and control cartilage from patients who had neck of the femur fractures found significantly lower expression levels in OA cartilage compared with control cartilage for five genes in the region—the exception being GPR22, which was not detected.53 Carriers of the OA risk allele showed a significant reduction in expression of HBP1 (HMG-box transcription factor which encodes a transcriptional repressor) in cartilage and synovium and of DUS4L (dihydrouridine synthase 4-Like) in fat pad.

MCF2L

Using 1000 Genomes Project based imputation in a GWAS for OA by the arcOGEN Consortium (3177 OA cases and 4894 controls), UK scientists were able to establish the third novel locus for OA in Europeans and the first common complex disease locus to be identified via 1000G imputation.19 Following large scale replication, rs11842874 in intron 4 of MCF2L (MCF.2 cell line derived transforming sequence-like, encoding the rho-specific guanine nucleotide exchange factor) reached genome-wide significance with p=2.1×10−8 and OR=1.17 (95% CI 1.11 to 1.23) (table 1).

MCF2L has been implicated in both skeletal and pain related outcomes of OA. Mcf2l rat models of OA have shown that the protein is expressed in articular chondrocytes.54 55 Another study in Mcf2l rat models found that its expression was highest in 5-week-old rat brain sections, and could be localised to neurones and α-tanycytes—bipolar cells in the hypothalamus bridging the cerebrospinal fluid to the portal capillaries—suggesting that Ost may participate in axonal transport in these specialised cells.56 In zebrafish, mcf2l was dynamically expressed in a range of cell types during development, including Kupffer's vesicle.57 Diffuse expression of mcf2l was observed in the zebrafish brain throughout development—consistent with the strong expression seen in the brain in rat—and in the developing zebrafish jaw cartilages, which suggests that mcf2l could also have a function in cartilage development. In human cells, mcf2l has been shown to regulate neurotrophin-3-induced cell migration in Schwann cells.58 Neurotrophin-3 is a member of the nerve growth factor (NGF) family. Knee OA patients treated with a humanised monoclonal antibody that inhibits NGF have shown improvements in both joint function and pain outcomes.59 60

Chr3p21.1 locus

The following eight loci were discovered by the largest single GWAS for knee and/or hip OA to date, performed by the arcOGEN Consortium in 7410 cases and 11 009 population based controls from the UK, and confirmed in replication efforts including up to 7473 cases and 42 938 controls of European descent.20

Two perfectly correlated SNPs in chr3p21.1 situated in an extended LD block comprising over 30 genes were associated with OA, and association was stronger in patients ascertained by the more homogeneous criterion of TJR compared to a mixture of TJR and radiographically defined cases (ROA). rs6976 (p=7.24×10−11, OR=1.12, 95% CI 1.08 to 1.16) is situated in the 3′ UTR of the GLT8D1 (glycosyltransferase 8 domain containing 1) gene, and rs11177 (p=1.25×10−10, OR=1.12, 95% CI 1.08 to 1.16) is a missense polymorphism within exon 3 of GNL3 (guanine nucleotide binding protein-like 3, or nucleostemin) (table 1). GNL3 is expressed in mesenchymal stem cells, from which chondrocytes are derived, and regulates the G1-S phase transition in stem cells.61–63 In cultured chondrocytes from patients with OA as compared with control subjects, nucleostemin protein values were substantially higher, suggesting that this gene may be functionally important in the pathogenesis of OA.20 However, because of the large number of other genes in the same LD block, substantial follow-up work is required to identify the culprit gene.

ASTN2

rs4836732 located within intron 18 of the ASTN2 gene was found to be most highly associated with female total hip replacement (THR) (p=6.11×10−10, OR=1.20, 95% CI 1.13 to 1.27) (table 1).20 ASTN2 (astrotactin 2) is a membrane protein that regulates surface levels of ASTN1 during neuronal migration64 and is highly expressed in the developing and adult brain. An intronic SNP within ASTN2 has been shown to have some evidence of involvement with the pathogenesis of adult attention deficit hyperactivity disorder (ADHD).65 In rare CNV analysis it has been shown that exonic deletion and duplication in the ASTN2 locus is associated with schizophrenia.66

FILIP1; SENP6

rs9350591 was found to be significantly associated with hip OA (p=2.42×10−9, OR=1.18, 95% CI 1.12 to 1.25) (table 1).20 This variant is located 38 kb upstream of FILIP1 (filamin A interacting protein 1) and 70 kb upstream of SENP6 (sentrin specific peptidase 6). The role of these poorly characterised genes in OA has not been explored yet. However, COL12A1 (collagen, type XII, α1) is found ∼326 kb away from the index SNP. Type XII collagen is expressed by osteoblasts and localises to the periosteum—an active area of bone formation. Col12a−/− null mice exhibit several skeletal abnormalities and alterations in the organisation and polarisation of osteoblasts, suggesting a role for type XII collagen in osteoblast differentiation and bone matrix formation.67

KLHDC5; PTHLH

rs10492367 reached genome-wide significance in the hip OA analysis (p=1.48×10−8, OR=1.14, 95% CI 1.09 to 1.20) (table 1).20 This SNP is situated 59 kb downstream of KLHDC5 (kelch domain containing 5) and 96 kb downstream of PTHLH (parathyroid hormone-like hormone). PTHLH presents an excellent candidate gene for OA as this hormone is known to regulate endochondral ossification (ie, bone development) by inhibiting chondrocytes from hypertrophy (reviewed in Zhang et al68). Parathyroid hormone related peptide expression is higher in chondrocytes from pathologic articular cartilage than from normal cartilage of humans.69 Pthrp-/- mice that survived gestation have accelerated differentiation of chondrocytes in bone.70

CHST11

rs835487 within intron 2 of CHST11 was found to be most significantly associated with THR (p=1.64×10−8, OR=1.13, 95% CI 1.09 to 1.18) (table1).20 CHST11 (carbohydrate sulfotransferase 11), also known as chondroitin-4-sulfotransferase-1 (C4ST-1), encodes an enzyme specific for the transfer of sulfate groups to the 4-O position in chondroitin, with chondroitin sulphate (CS) being an important component of cartilage proteoglycans. CHST11 has significantly higher expression in osteoarthritic compared to normal articular cartilage.71 Proper 4-O sulfation of chondroitin by CHST11 plays a crucial role in skeletal development and signalling events and in human disease, including cancer (reviewed in Kluppel72). Mice homozygous for a mutation in CHST11 die shortly after birth with severe chondrodysplasia, growth plate defects, and accelerated chondrocyte differentiation. The reduction in C4S in mutant mice leads to changes in the spatial distribution of CS and altered patterns of TGF-β and bone morphogenetic protein signalling in the cartilage growth plate.73

TP63

rs12107036 in intron 12 of TP63 (tumour protein p63) was associated with total knee replacement (TKR) in females with borderline genome-wide significance (p=6.71×10−8, OR=1.21, 95% CI 1.13 to 1.29) (table 1).20 The role of p63 mutations in cancer is well established (reviewed in Muller and Vousden74). Recently a polymorphism in this gene has been robustly associated with facial morphology in Europeans.75 p63 null mice have major defects in their limb, craniofacial and epithelial development implying a role for this gene in skeletal function.76 77

FTO

rs8044769 within intron 1 of FTO was most highly associated with OA in females (p=6.85×10−8, OR=1.11, 95% CI 1.07 to 1.15) (table 1).20 Variation in the FTO (fat mass and obesity associated) gene is known to play an important role in susceptibility to obesity,78 and rs8044769 is in partial LD (r2>0.6) with the reported most highly associated SNP for body mass index (BMI). Overweight/obesity is a well established risk factor for OA susceptibility and it is also a predictor for OA progression, especially of the knee joint and less of the hip joint.8 79 The signal was attenuated after BMI adjustment, suggesting that the FTO gene exerts its effect on OA through obesity.20

SUPT3H; CDC5L

The only signal from the arcOGEN GWAS that exhibited the highest association in the male OA stratum was from rs10948172 (p=7.92×10−8, OR=1.14, 95% CI 1.09 to 1.20) situated between the CDC5L (CDC5 cell division cycle 5-like) and SUPT3H (suppressor of Ty3 homolog) genes with unclear roles in OA (table 1).20 However ∼500 kb away but in the same LD block is the RUNX2 (runt related transcription factor 2) gene which codes for a multifunctional transcription factor essential for osteoblast development and proper bone formation.80 Runx2 controls skeletal development by regulating the differentiation of chondrocytes and osteoblasts and the expression of many extracellular matrix protein genes during this process (reviewed in Komori81). Consistent with its role as a master organiser, alterations in RUNX2 expression levels have been associated with skeletal diseases in human and mice.82 83 RUNX2 has been suggested as a possible biomarker of bone metabolism in several forms of arthritis.84

NCOA3

The largest GWAS meta-analysis for OA to date by the TREAT-OA consortium (in 11 277 hip OA cases and 67 473 controls including follow-up studies) established an additional variant, rs6094710, located near NCOA3 with p=7.9×10−9 and OR=1.28 (95% CI 1.18 to 1.39) (table 1).22 This gene is expressed in articular cartilage and its expression is significantly reduced in OA affected cartilage compared to preserved cartilage from the same joint.22

The molecular mechanism by which NCOA3 could cause OA is rather unclear. NCOA3 is involved in the co-activation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Several of these hormones have been implicated in skeletal metabolism and osteoarthritis. NCOA3 knockout mice exhibit growth retardation and reduced adult body size, but the molecular mechanism responsible for this growth retardation remains largely unknown. In female mice the reproductive system showed abnormal development and oestrogen values were significantly lower than in the wild type indicating a putative role of NCOA3 in steroid regulation.85 Alternative hypotheses for a causal effect of the NCOA3 gene in OA are through regulation of the target tissue responses to thyroid hormone T3 or through transcriptional regulation in mechanotransduction.22

DOTL1

Prompted by the strong association of a variant in the DOT1L gene with minimum joint space width (minJSW) at the hip,86 the TreatOA consortium and other European studies performed recently a large scale meta-analysis across seven OA scans to empower the examination of the association of this variant with hip OA. In male subjects the C allele of DOT1L rs12982744 was found significantly associated with OA (p=7.8×10−9, OR=1.17, 95% CI 1.11 to 1.23) whereas for both genders combined the p value was 8.1×10−8 (table 1).21 Interestingly, as for the GDF5 polymorphism, the same DOT1L variant associated with OA has also been associated with height,87 suggesting a role in skeletal formation.

rs12982744 is in the first intron of DOT1L (DOT1-like, histone H3 methyltransferase) gene which encodes an essential and dedicated enzyme for Wnt target gene activation in the intestine and is required for the expression of genes that require high levels of Wnt signalling in drosophila.88 89 Wnt signalling is critical in the formation of cartilage and bone and in the development of the synovial joint. In vitro functional analyses demonstrated a role for DOT1L in chondrogenesis and the protein was found to interact directly with transcription factor 4—a transcription factor interacting with β-catenin—suggesting a role for this gene in the Wnt/β-catenin signalling cascade in developing chondrocytes.86

The importance of phenotype definition in genetic studies of OA

Studies in other musculoskeletal traits have demonstrated the increase in power that can be afforded by investigating quantitative traits closer to the underlying biological phenotype. For example, in the largest GWAS for osteoporosis to date 56 loci associated with bone mineral density at genome-wide significance compared to six loci associated with the hard clinical outcome of fracture.90 In contrast to several diseases that can be considered as the extreme of the distribution of a physiological trait, OA is a highly heterogeneous disease affecting the entire joint and is manifested at different or several joint sites (generalised OA). OA is characterised by variable clinical features with possibly different genetic aetiologies. Currently OA ascertainment is based on either radiographically derived or symptomatic criteria, or a combination of these. Radiographic definition considers only pathophysiological joint features scored from radiographs. Symptomatic definition considers OA cases when both radiographic and pathological symptoms such as pain, stiffness, and loss of function at joints are present. For radiographic OA (ROA) several scoring systems exist, but the most widely used is the Kellgren-Lawrence (KL) grading system with grade 2 (definitive small osteophytes and little/mild joint space narrowing) or over being classified as ROA. However, an investigation by the TreatOA consortium on phenotype standardisation noted that among major cohort studies KL scores are interpreted differently, especially for the knee and hip.91 The great variability of disease definition among different studies presents an extra source of phenotype heterogeneity.

There are several arguments for and against using a more homogeneous phenotype for OA by examining cases ascertained by TJR only. Pain and disability among subjects undergoing TJR are often poorly correlated with radiographic severity and TJR candidates show considerable heterogeneity in these symptomatic and radiographic features of OA.92 93 On the other hand, TJR definition for OA has been proposed for randomised clinical trials (RCTs) as it is the main clinical outcome that is representative of severe symptomatic large joint OA.94 The familial concordance for hip and knee OA is greater in surgically defined than in radiographically defined disease.95–97 In the arcOGEN study the authors were able to investigate the effect of OA phenotype definition on the strength of association of the eight established signals by comparing the results of meta-analyses employing TJR only cases as opposed to studying all cases (TJR and ROA combined). Four signals (rs6976, rs4836732, rs835487, rs12107036) showed stronger evidence for association in the TJR meta-analysis compared to the analysis of all cases, despite the considerable decrease in sample size and number of studies in the discovery and replication sets. Only one signal (rs9350591) was stronger in the meta-analysis employing all cases and three signals (rs10492367, rs8044769, rs10948172) remained relatively unchanged.20

Pain, the most common and discomforting symptom for OA, is also an important phenotype to study, but the limited studies for OA related pain to date have not been able to robustly detect any underlying genetic variants (reviewed in Van Meurs and Uitterlinden98).

As with other traits (eg, hypertension and blood pressure measurements99 100) it is anticipated that the examination of underlying, intermediate traits that together synthesise the phenotype of OA but are closer to the biology of the disease could be very advantageous in such a heterogeneous disorder. An example of this approach is the implication of the DOT1L gene in hip OA pathogenesis. The DOTL1 locus was first discovered significantly associated with cartilage thickness, as measured by joint space width on radiographs, in a relatively small number of subjects, but did not reach genome-wide significance in a well sized case–control analysis for hip.86 Subsequently and upon additional follow-up, large scale, replication efforts in several hip OA case–control datasets, the association of DOTL1 with OA was eventually established with genome-wide significance.21

There is some evidence that genetic factors influence joint morphology, specific anatomic pattern of joint involvement, severity, and bone responses in OA at the hip and knee, and so these could represent promising endophenotypes to be studied. For example, morphological features such as the pistol grip deformity (PGD), femoral neck shaft angle (FNSA), the alpha angle and the lateral centre edge (LCE) angle have been associated with hip OA and may be under genetic control.101–103 Bone responses to hip OA may be classified as atrophic, normotrophic or hypertrophic, with atrophic OA being is a more progressive form of OA than hypertrophic OA.104 In the only genetic study for bone response to OA, the risk for definite hip OA among siblings was twofold higher in siblings of index participants who had an atrophic pattern of disease than in siblings whose index case had any degree of osteophyte.105

Site and sex specific differences at OA loci

There is compelling evidence that there are joint specific genetic factors contributing to OA aetiology,106 consistent with the significant differences reported in OA prevalence between different skeletal sites.107It is thus not surprising that most of the GWAS for OA conducted thus far have stratified cases according to OA manifested either at the hip or at the knee joint and have identified site specific associations.

Sex differences have also been reported in the prevalence of OA,107 with female sex being an important risk factor for OA. Epidemiological studies have suggested that oestrogen loss may be accompanied by an increase in the prevalence and incidence of knee and hip OA in females,108 which may partly explain the sex differences in the prevalence of OA. Genetic studies that have stratified for sex have identified some clear differences. The most compelling example is the significantly different (p=0.003) effect size estimate between both sexes at the DOTL1 polymorphism (OR=1.17, 95% CI 1.11 to 1.23, p=7.8×10−9 in males vs OR=1.05, 95% CI 1.00 to 1.10, p=0.04 in females), and some of the loci identified by the arcOGEN study (ASTN2, TP63, and FTO significantly associated with OA in females and SUPT3H;CDC5L locus in males).20 21

Translational potential of current findings

It is universally accepted that in characterising the genetic aetiology of common multifactorial diseases that can be ascribed to common variation, the GWAS approach has been very fruitful. However, because of the modest and small effect sizes exerted by the majority of common variants the translational potential of GWAS findings has been extensively criticised. Small effect sizes, however, should not undermine the biological importance of the genetically implicated genes.

An excellent example is the recent implication of CHST11 in OA. CHST11 codes for an enzyme responsible for the formation of CS, an important cartilage proteoglycan, with proteoglycan modulation being a currently active area of OA therapeutic development. CS is used as a symptomatic, slow acting drug for OA recommended by the latest OA Research Society International (OARSI) treatment guidelines but, despite extensive trials, evidence for its effectiveness remains controversial.109 The implication of CHST11 as a risk locus for OA suggests that alternate therapeutic approaches targeting the same pathway may be clinically beneficial.

The implication of the PTHLH locus in risk of OA may pave the way for exploring recently developed novel anabolic treatments for osteoporosis (peptide fragments based on parathyroid hormone) in the management of OA.

The genetic association with FTO confirms existing epidemiological evidence of the interplay between obesity and OA and highlights existing clinical recommendations that weight loss regimens may offer symptom relief and avoidance.

Furthermore, the biological insights afforded by the novel robust associations represent the largest, though indirect, translational contribution of these GWAS findings to OA.

Future studies in OA

In line with other common complex diseases, all OA associated variants thus far collectively explain only a small fraction (<10%) of the genetic component. There are possibly several more common variants to be discovered for OA through larger scale meta-analytical efforts,23 but also low frequency and rare variants, structural variants, gene–environment interactions, and epigenetic changes are likely to contribute substantially towards this missing heritability.110

As the new era of next generation sequencing (NGS) association studies is emerging, the field of complex disease genetics is now focusing on the contribution of low minor allele frequency (MAF 1–5%) and rare variants (MAF <1%). Such variants may have larger effect sizes, higher penetrance, and point to causal genes or functional units (eg, regulatory regions) more readily. Studies of rare variation in OA are currently underway.

The study of less heterogeneous, narrower OA endophenotypes closer to the biology of the disease is likely to lead to many more common and low frequency/rare variants underpinning specific and clinically relevant processes of disease development and progression. In addition, large scale studies investigating interactions between genetic and environmental risk factors can conceivably help shape approaches of disease management. Ultimately coupling all these genetic variants to function through functional studies and by integration with data generated from transcriptomics—the study of gene expression—and epigenomics—the study of epigenetic modifications such as DNA methylation, histone modifications, etc in the control of gene expression—will shape future genomics research in OA.

Summary

Over the past few years GWAS in individuals of European and Asian ethnicity have collectively robustly identified 15 OA associated variants with genome-wide significance. All of the variants that have been detected thus far are common in frequency—which is by definition what GWAS are designed for—and appear to confer small to modest effect sizes. Fine mapping is required to identify which are the causal variants at the established loci. In addition, functional work is required to establish the causal genes, particularly for the loci that encompass many genes in regions of extended linkage disequilibrium. Despite these limitations the research that has been carried out thus far has provided insights into the biological processes that underlie OA susceptibility and has revealed some candidates with translational potential. The future outlook for OA genetics appears likely to be shaped by larger meta-analytical efforts to identify additional susceptibility loci, NGS approaches that can interrogate low frequency and rare variation, expanded and tighter OA phenotype definitions, and the integration of genetic variation studies with epigenetics and transcriptomics.

Footnotes

Contributors: KP and EZ contributed equally to this manuscript.

Competing interests: EZ and KP are funded by the Wellcome Trust (098051). KP is funded by Arthritis Research UK (19542).

Provenance and peer review: Not commissioned; externally peer reviewed.

References

  • 1.Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 2008;22:351–84 [DOI] [PubMed] [Google Scholar]
  • 2.Altman RD. Early management of osteoarthritis. Am J Manag Care 2010;16:S41–7 [PubMed] [Google Scholar]
  • 3.Moskowitz RW. The burden of osteoarthritis: clinical and quality of-life issues. Am J Manag Care 2009;15:S223–9 [PubMed] [Google Scholar]
  • 4.Katz JN. Total joint replacement in osteoarthritis. Best Pract Res Clin Rheumatol 2006;20:145–53 [DOI] [PubMed] [Google Scholar]
  • 5.Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet 2005;365:965–73 [DOI] [PubMed] [Google Scholar]
  • 6.Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, Heyse SP, Hirsch R, Hochberg MC, Hunder GG, Liang MH, Pillemer SR, Steen VD, Wolfe F. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 1998;41:778–99 [DOI] [PubMed] [Google Scholar]
  • 7.Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F; National Arthritis Data Workgroup Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008;58:26–35 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Bierma-Zeinstra SM, Koes BW. Risk factors and prognostic factors of hip and knee osteoarthritis. Nat Clin Pract Rheumatol 2007;3:78–85 [DOI] [PubMed] [Google Scholar]
  • 9.Loughlin J. The genetic epidemiology of human primary osteoarthritis: current status. Expert Rev Mol Med 2005;7:1–12 [DOI] [PubMed] [Google Scholar]
  • 10.Valdes AM, Spector TD. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol 2011;7:23–32 [DOI] [PubMed] [Google Scholar]
  • 11.Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, Fujioka M, Sudo A, Uchida A, Yamamoto S, Ozaki K, Takigawa M, Tanaka T, Nakamura Y, Jiang Q, Ikegawa S. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet 2007;39:529–33 [DOI] [PubMed] [Google Scholar]
  • 12.Evangelou E, Chapman K, Meulenbelt I, Karassa FB, Loughlin J, Carr A, Doherty M, Doherty S, Gómez-Reino JJ, Gonzalez A, Halldorsson BV, Hauksson VB, Hofman A, Hart DJ, Ikegawa S, Ingvarsson T, Jiang Q, Jonsdottir I, Jonsson H, Kerkhof HJ, Kloppenburg M, Lane NE, Li J, Lories RJ, van Meurs JB, Näkki A, Nevitt MC, Rodriguez-Lopez J, Shi D, Slagboom PE, Stefansson K, Tsezou A, Wallis GA, Watson CM, Spector TD, Uitterlinden AG, Valdes AM, Ioannidis JP. Large-scale analysis of association between GDF5 and FRZB variants and osteoarthritis of the hip, knee, and hand. Arthritis Rheum 2009;60:1710–21 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Valdes AM, Evangelou E, Kerkhof HJ, Tamm A, Doherty SA, Kisand K, Tamm A, Kerna I, Uitterlinden A, Hofman A, Rivadeneira F, Cooper C, Dennison EM, Zhang W, Muir KR, Ioannidis JP, Wheeler M, Maciewicz RA, van Meurs JB, Arden NK, Spector TD, Doherty M. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann Rheum Dis 2011;70:873–5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hindorff LA, MacArthur J, Morales J, Junkins HA, Hall PN, Klemm AK, Manolio TA. A Catalog of Published Genome-Wide Association Studies. http://www.genome.gov/gwastudies (accessed 15 April 2013) [Google Scholar]
  • 15.Miyamoto Y, Shi D, Nakajima M, Ozaki K, Sudo A, Kotani A, Uchida A, Tanaka T, Fukui N, Tsunoda T, Takahashi A, Nakamura Y, Jiang Q, Ikegawa S. Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nat Genet 2008;40:994–8 [DOI] [PubMed] [Google Scholar]
  • 16.Nakajima M, Takahashi A, Kou I, Rodriguez-Fontenla C, Gomez-Reino JJ, Furuichi T, Dai J, Sudo A, Uchida A, Fukui N, Kubo M, Kamatani N, Tsunoda T, Malizos KN, Tsezou A, Gonzalez A, Nakamura Y, Ikegawa S. New sequence variants in HLA class II/III region associated with susceptibility to knee osteoarthritis identified by genome-wide association study. PLoS One 2010;5:e9723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kerkhof HJ, Lories RJ, Meulenbelt I, Jonsdottir I, Valdes AM, Arp P, Ingvarsson T, Jhamai M, Jonsson H, Stolk L, Thorleifsson G, Zhai G, Zhang F, Zhu Y, van der Breggen R, Carr A, Doherty M, Doherty S, Felson DT, Gonzalez A, Halldorsson BV, Hart DJ, Hauksson VB, Hofman A, Ioannidis JP, Kloppenburg M, Lane NE, Loughlin J, Luyten FP, Nevitt MC, Parimi N, Pols HA, Rivadeneira F, Slagboom EP, Styrkársdóttir U, Tsezou A, van de Putte T, Zmuda J, Spector TD, Stefansson K, Uitterlinden AG, van Meurs JB. A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22. Arthritis Rheum 2010;62:499–510 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Evangelou E, Valdes AM, Kerkhof HJ, Styrkarsdottir U, Zhu Y, Meulenbelt I, Lories RJ, Karassa FB, Tylzanowski P, Bos SD, arcOGEN Consortium. Akune T, Arden NK, Carr A, Chapman K, Cupples LA, Dai J, Deloukas P, Doherty M, Doherty S, Engstrom G, Gonzalez A, Halldorsson BV, Hammond CL, Hart DJ, Helgadottir H, Hofman A, Ikegawa S, Ingvarsson T, Jiang Q, Jonsson H, Kaprio J, Kawaguchi H, Kisand K, Kloppenburg M, Kujala UM, Lohmander LS, Loughlin J, Luyten FP, Mabuchi A, McCaskie A, Nakajima M, Nilsson PM, Nishida N, Ollier WE, Panoutsopoulou K, van de Putte T, Ralston SH, Rivadeneira F, Saarela J, Schulte-Merker S, Shi D, Slagboom PE, Sudo A, Tamm A, Tamm A, Thorleifsson G, Thorsteinsdottir U, Tsezou A, Wallis GA, Wilkinson JM, Yoshimura N, Zeggini E, Zhai G, Zhang F, Jonsdottir I, Uitterlinden AG, Felson DT, van Meurs JB, Stefansson K, Ioannidis JP, Spector TD; Translation Research in Europe Applied Technologies for Osteoarthritis (TreatOA) Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. Ann Rheum Dis 2011;70:349–55 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Day-Williams AG, Southam L, Panoutsopoulou K, Rayner NW, Esko T, Estrada K, Helgadottir HT, Hofman A, Ingvarsson T, Jonsson H, Keis A, Kerkhof HJ, Thorleifsson G, Arden NK, Carr A, Chapman K, Deloukas P, Loughlin J, McCaskie A, Ollier WE, Ralston SH, Spector TD, Wallis GA, Wilkinson JM, Aslam N, Birell F, Carluke I, Joseph J, Rai A, Reed M, Walker K, arcOGEN Consortium. Doherty SA, Jonsdottir I, Maciewicz RA, Muir KR, Metspalu A, Rivadeneira F, Stefansson K, Styrkarsdottir U, Uitterlinden AG, van Meurs JB, Zhang W, Valdes AM, Doherty M, Zeggini E. A variant in MCF2L is associated with osteoarthritis. Am J Hum Genet 2011;89:446–50 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.arcOGEN Consortium; arcOGEN Collaborators Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 2012;380:815–23 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Evangelou E, Valdes AM, Castano-Betancourt MC, Doherty M, Doherty S, Esko T, Ingvarsson T, Ioannidis JP, Kloppenburg M, Metspalu A, Ntzani EE, Panoutsopoulou K, Slagboom PE, Southam L, Spector TD, Styrkarsdottir U, Stefanson K, Uitterlinden AG, Wheeler M, Zeggini E, Meulenbelt I, van Meurs JB; arcOGEN consortium, the TREAT-OA consortium The DOT1L rs12982744 polymorphism is associated with osteoarthritis of the hip with genome-wide statistical significance in males. Ann Rheum Dis [Published Online First 16 Mar 16 2013]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Evangelou E, Kerkhof HJ, Styrkarsdottir U, Ntzani EE, Bos SD, Esko T, Evans DS, Metrustry S, Panoutsopoulou K, Ramos YFM, Thorleifsson G, Tsilidis KK, arcOGEN Consortium. Arden N, Aslam N, Bellamy N, Birrell F, Blanco FJ, Carr A, Chapman K, Day-Williams AG, Deloukas P, Doherty M, Engström G, Helgadottir HT, Hofman A, Ingvarsson T, Jonsson H, Keis A, Keurentjes JC, Kloppenburg M, Lind PA, McCaskie A, Martin NG, Milani L, Montgomery GW, Nelissen RGHH, Nevitt MC, Nilsson PM, Ollier WER, Parimi N, Rai A, Ralston SH, Reed MR, Riancho JA, Rivadeneira F, Rodriguez-Fontenla C, Southam L, Thorsteinsdottir U, Tsezou A, Wallis GA, Wilkinson JM, Gonzalez A, Lane NE, Lohmander LS, Loughlin J, Metspalu A, Andre A, Jonsdottir I, Stefansson K, Slagboom PE, Zeggini E, Meulenbelt I, Ioannidis JPA, Spector TD, van Meurs JB, Valdes AM. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann Rheum Dis 2013;72:1264–5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Panoutsopoulou K, Southam L, Elliott KS, Wrayner N, Zhai G, Beazley C, Thorleifsson G, Arden NK, Carr A, Chapman K, Deloukas P, Doherty M, McCaskie A, Ollier WE, Ralston SH, Spector TD, Valdes AM, Wallis GA, Wilkinson JM, Arden E, Battley K, Blackburn H, Blanco FJ, Bumpstead S, Cupples LA, Day-Williams AG, Dixon K, Doherty SA, Esko T, Evangelou E, Felson D, Gomez-Reino JJ, Gonzalez A, Gordon A, Gwilliam R, Halldorsson BV, Hauksson VB, Hofman A, Hunt SE, Ioannidis JP, Ingvarsson T, Jonsdottir I, Jonsson H, Keen R, Kerkhof HJ, Kloppenburg MG, Koller N, Lakenberg N, Lane NE, Lee AT, Metspalu A, Meulenbelt I, Nevitt MC, O'Neill F, Parimi N, Potter SC, Rego-Perez I, Riancho JA, Sherburn K, Slagboom PE, Stefansson K, Styrkarsdottir U, Sumillera M, Swift D, Thorsteinsdottir U, Tsezou A, Uitterlinden AG, van Meurs JB, Watkins B, Wheeler M, Mitchell S, Zhu Y, Zmuda JM, arcOGEN Consortium. Zeggini E, Loughlin J. Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study. Ann Rheum Dis 2011;70:864–7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.International Schizophrenia Consortium Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009;460: 748–52 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sanna S, Jackson AU, Nagaraja R, Willer CJ, Chen WM, Bonnycastle LL, Shen H, Timpson N, Lettre G, Usala G, Chines PS, Stringham HM, Scott LJ, Dei M, Lai S, Albai G, Crisponi L, Naitza S, Doheny KF, Pugh EW, Ben-Shlomo Y, Ebrahim S, Lawlor DA, Bergman RN, Watanabe RM, Uda M, Tuomilehto J, Coresh J, Hirschhorn JN, Shuldiner AR, Schlessinger D, Collins FS, Davey Smith G, Boerwinkle E, Cao A, Boehnke M, Abecasis GR, Mohlke KL. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet 2008;40:198–203 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Williams FM, Popham M, Hart DJ, de Schepper E, Bierma-Zeinstra S, Hofman A, Uitterlinden AG, Arden NK, Cooper C, Spector TD, Valdes AM, van Meurs J. GDF5 single-nucleotide polymorphism rs143383 is associated with lumbar disc degeneration in Northern European women. Arthritis Rheum 2011;63:708–12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Vaes RB, Rivadeneira F, Kerkhof JM, Hofman A, Pols HA, Uitterlinden AG, van Meurs JB. Genetic variation in the GDF5 region is associated with osteoarthritis, height, hip axis length and fracture risk: the Rotterdam study. Ann Rheum Dis 2009;68:1754–60 [DOI] [PubMed] [Google Scholar]
  • 28.Dai J, Shi D, Zhu P, Qin J, Ni H, Xu Y, Yao C, Zhu L, Zhu H, Zhao B, Wei J, Liu B, Ikegawa S, Jiang Q, Ding Y. Association of a single nucleotide polymorphism in growth differentiate factor 5 with congenital dysplasia of the hip: a case-control study. J Arthritis Res Ther 2008;10:R126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Rouault K, Scotet V, Autret S, Gaucher F, Dubrana F, Tanguy D, El Rassi CY, Fenoll B, Férec C. Evidence of association between GDF5 polymorphisms and congenital dislocation of the hip in a Caucasian population. Osteoarthritis Cartilage 2010;18:1144–9 [DOI] [PubMed] [Google Scholar]
  • 30.Posthumus M, Collins M, Cook J, Handley CJ, Ribbans WJ, Smith RK, Schwellnus MP, Raleigh SM. Components of the transforming growth factor-beta family and the pathogenesis of human Achilles tendon pathology—a genetic association study. Rheumatology 2010;49:2090–7 [DOI] [PubMed] [Google Scholar]
  • 31.Southam L, Rodriguez-Lopez J, Wilkins JM, Pombo-Suarez M, Snelling S, Gomez-Reino JJ, Chapman K, Gonzalez A, Loughlin J. An SNP in the 5 -UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage. Hum Mol Genet 2007;16:2226–32 [DOI] [PubMed] [Google Scholar]
  • 32.Egli RJ, Southam L, Wilkins JM, Lorenzen I, Pombo-Suarez M, Gonzalez A, Carr A, Chapman K, Loughlin J. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. Arthritis Rheum 2009;60:2055–64 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Cornelis FM, Luyten FP, Lories RJ. Functional effects of susceptibility genes in osteoarthritis. Discov Med 2011;12:129–39 [PubMed] [Google Scholar]
  • 34.Mikic B. Multiple effects of GDF-5 deficiency on skeletal tissues: implications for therapeutic bioengineering. Ann Biomed Eng 2004;32:466–76 [DOI] [PubMed] [Google Scholar]
  • 35.Mikic B, Battaglia TC, Taylor EA. The effect of growth/differentiation factor-5 deficiency on femoral composition and mechanical behavior in mice. Bone 2002;30:733–7 [DOI] [PubMed] [Google Scholar]
  • 36.Edwards CJ, Francis-West PH. Bone morphogenetic proteins in the development and healing of synovial joints. Semin Arthritis Rheum 2001;31:33–42 [DOI] [PubMed] [Google Scholar]
  • 37.Luyten FP. Cartilage-derived morphogenetic protein-1. Int J Biochem Cell Biol 1997;29:1241–4 [DOI] [PubMed] [Google Scholar]
  • 38.Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ. Limb alterations in brachypodism mice due to mutations in a new member of the TGFb-superfamily. Nature 1994;368:639–43 [DOI] [PubMed] [Google Scholar]
  • 39.Takahara M, Harada M, Guan D, Otsuji M, Naruse T, Takagi M, Ogino T. Developmental failure of phalanges in the absence of growth/differentiation factor 5. Bone 2004;35:1069–76 [DOI] [PubMed] [Google Scholar]
  • 40.Daans M, Luyten FP, Lories RJ. GDF5 deficiency in mice is associated with instability-driven joint damage, gait and subchondral bone changes. Ann Rheum Dis 2011;70:208–13 [DOI] [PubMed] [Google Scholar]
  • 41.Harada M, Takahara M, Zhe P, Otsuji M, Iuchi Y, Takagi M, Ogino T. Developmental failure of the intra- articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthritis Cartilage 2007;15:468–74 [DOI] [PubMed] [Google Scholar]
  • 42.Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW. Mechanisms of GDF-5 action during skeletal development. Development 1999;126:1305–15 [DOI] [PubMed] [Google Scholar]
  • 43.Masuya H, Nishida K, Furuichi T, Toki H, Nishimura G, Kawabata H, Yokoyama H, Yoshida A, Tominaga S, Nagano J, Shimizu A, Wakana S, Gondo Y, Noda T, Shiroishi T, Ikegawa S. A novel dominant-negative mutation in Gdf5 generated by ENU mutagenesis impairs joint formation and causes osteoarthritis in mice. Hum Mol Genet 2007;16:2366–75 [DOI] [PubMed] [Google Scholar]
  • 44.Chhabra A, Tsou D, Clark RT, Gaschen V, Hunziker EB, Mikic B. GDF-5 deficiency in mice delays Achilles tendon healing. J Orthop Res 2003;21:826–35 [DOI] [PubMed] [Google Scholar]
  • 45.Stefánsson SE, Jónsson H, Ingvarsson T, Manolescu I, Jónsson HH, Olafsdóttir G, Pálsdóttir E, Stefánsdóttir G, Sveinbjörnsdóttir G, Frigge ML, Kong A, Gulcher JR, Stefánsson K. Genomewide scan for hand osteoarthritis: a novel mutation in matrilin-3. Am J Hum Genet 2003;72:1448–59 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Mabuchi A, Haga N, Maeda K, Nakashima E, Manabe N, Hiraoka H, Kitoh H, Kosaki R, Nishimura G, Ohashi H, Ikegawa S. Novel and recurrent mutations clustered in the von Willebrand factor A domain of MATN3 in multiple epiphyseal dysplasia. Hum Mutat 2004;24:439–40 [DOI] [PubMed] [Google Scholar]
  • 47.Shi D, Zheng Q, Chen D, Zhu L, Qin A, Fan J, Liao J, Xu Z, Lin Z, Norman P, Xu J, Nakamura T, Dai K, Zheng M, Jiang Q. Association of single-nucleotide polymorphisms in HLA class II/III region with knee osteoarthritis. Osteoarthritis Cartilage 2010;18:1454–7 [DOI] [PubMed] [Google Scholar]
  • 48.Valdes AM, Styrkarsdottir U, Doherty M, Morris DL, Mangino M, Tamm A, Doherty SA, Kisand K, Kerna I, Tamm A, Wheeler M, Maciewicz RA, Zhang W, Muir KR, Dennison EM, Hart DJ, Metrustry S, Jonsdottir I, Jonsson GF, Jonsson H, Ingvarsson T, Cooper C, Vyse TJ, Spector TD, Stefansson K, Arden NK. Large scale replication study of the association between HLA class II/BTNL2 variants and osteoarthritis of the knee in European-descent populations. PLoS One 2011;6:e23371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot CC, Jr, Wright MW, Wain HM, Trowsdale J, Ziegler A, Beck S. Gene map of the extended human MHC. Nat Rev Genet 2004;5:889–99 [DOI] [PubMed] [Google Scholar]
  • 50.Arnett HA, Escobar SS, Gonzalez-Suarez E, Budelsky AL, Steffen LA, Boiani N, Zhang M, Siu G, Brewer AW, Viney JL. BTNL2, a butyrophilin/B7-like molecule, is a negative costimulatory molecule modulated in intestinal inflammation. J Immunol 2007;178:1523–33 [DOI] [PubMed] [Google Scholar]
  • 51.Nakamura H, Tanaka M, Masuko-Hongo K, Yudoh K, Kato T, Beppu M, Nishioka K. Enhanced production of MMP-1, MMP-3, MMP-13, and RANTES by interaction of chondrocytes with autologous T cells. Rheumatol Int 2006;26: 984–90 [DOI] [PubMed] [Google Scholar]
  • 52.Sakkas LI, Platsoucas CD. The role of T cells in the pathogenesis of osteoarthritis. Arthritis Rheum 2007;56:409–24 [DOI] [PubMed] [Google Scholar]
  • 53.Raine EV, Wreglesworth N, Dodd AW, Reynard LN, Loughlin J. Gene expression analysis reveals HBP1 as a key target for the osteoarthritis susceptibility locus that maps to chromosome7q22. Ann Rheum Dis 2012;71:2020–7 [DOI] [PubMed] [Google Scholar]
  • 54.Gouze JN, Gouze E, Popp MP, Bush ML, Dacanay EA, Kay JD, Levings PP, Patel KR, Saran JP, Watson RS, Ghivizzani SC. Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta. Arthritis Res Ther 2006;8:R173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Appleton CT, Pitelka V, Henry J, Beier F. Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum 2007;56:1854–68 [DOI] [PubMed] [Google Scholar]
  • 56.Horii Y, Beeler JF, Sakaguchi K, Tachibana M, Miki T. A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J 1994;13:4776–86 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Mitchell RE, Huitema LFA, Skinner REH, Brunt LH, Severn C, Schulte-Merker S, Hammond CL. New tools for studying osteoarthritis genetics in zebrafish. Osteoarthritis Cartilage 2013;21:269–78 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Liu Z, Adams HC, 3rd, Whitehead IP. The rhospecific guanine nucleotide exchange factor Dbs regulates breast cancer cell migration. J Biol Chem 2009;284: 15771–80 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Lane NE, Schnitzer TJ, Birbara CA, Mokhtarani M, Shelton DL, Smith MD, Brown MT. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med 2010;363:1521–31 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Wood JN. Nerve growth factor and pain. N Engl J Med 2010;363:1572–3 [DOI] [PubMed] [Google Scholar]
  • 61.Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 2003;89:1235–49 [DOI] [PubMed] [Google Scholar]
  • 62.Han C, Zhang X, Xu W, Wang W, Qian H, Chen Y. Cloning of the nucleostemin gene and its function in transforming human embryonic bone marrow mesenchymal stem cells into F6 tumor cells. Int J Mol Med 2005;16:205–13 [PubMed] [Google Scholar]
  • 63.Ma H, Pederson T. Nucleostemin: a multiplex regulator of cell-cycle progression. Trends Cell Biol 2008;18:575–9 [DOI] [PubMed] [Google Scholar]
  • 64.Wilson PM, Fryer RH, Fang Y, Hatten ME. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J Neurosci 2010;30:8529–40 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Röser C, Nguyen TT, Craig DW, Romanos J, Heine M, Meyer J, Freitag C, Warnke A, Romanos M, Schäfer H, Walitza S, Reif A, Stephan DA, Jacob C. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 2008;115:1573–85 [DOI] [PubMed] [Google Scholar]
  • 66.Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E, Genetic Risk and Outcome in Psychosis (GROUP) Consortium. Sabatti C, Geurts van Kessel A, Brunner HG, Ophoff RA, Veltman JA. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J Hum Genet 2008;83:504–10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Izu Y, Sun M, Zwolanek D, Veit G, Williams V, Cha B, Jepsen KJ, Koch M, Birk DE. Type XII collagen regulates osteoblast polarity and communication during bone formation. J Cell Biol 2011;193:1115–30 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Zhang W, Chen J, Zhang S, Ouyang HW. Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: the implication for articular cartilage repair. Arthritis Res Ther 2012;14:221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Okano K, Tsukazaki T, Ohtsuru A, Osaki M, Yonekura A, Iwasaki K, Yamashita S. Expression of parathyroid hormone-related peptide in human osteoarthritis. J Orthop Res 1997;15:175–80 [DOI] [PubMed] [Google Scholar]
  • 70.Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize LH, Ho C, Mulligan RC, Abou-Samra AB, Jüppner H, Segre GV, Kronenberg HM. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996;273:663–66 [DOI] [PubMed] [Google Scholar]
  • 71.Karlsson C, Dehne T, Lindahl A, Brittberg M, Pruss A, Sittinger M, Ringe J. Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarthritis Cartilage 2010;18:581–92 [DOI] [PubMed] [Google Scholar]
  • 72.Kluppel M. The roles of chondroitin-4-sulfotransferase-1 in development and disease. Prog Mol Biol Transl Sci 2010;93:113–32 [DOI] [PubMed] [Google Scholar]
  • 73.Kluppel M, Wight TN, Chan C, Hinek A, Wrana JL. Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Development 2005;132:3989–4003 [DOI] [PubMed] [Google Scholar]
  • 74.Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol 2013;15:2–8 [DOI] [PubMed] [Google Scholar]
  • 75.Liu F, van der Lijn F, Schurmann C, Zhu G, Chakravarty MM, Hysi PG, Wollstein A, Lao O, de Bruijne M, Ikram MA, van der Lugt A, Rivadeneira F, Uitterlinden AG, Hofman A, Niessen WJ, Homuth G, de Zubicaray G, McMahon KL, Thompson PM, Daboul A, Puls R, Hegenscheid K, Bevan L, Pausova Z, Medland SE, Montgomery GW, Wright MJ, Wicking C, Boehringer S, Spector TD, Paus T, Martin NG, Biffar R, Kayser M. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet 2012;8:e1002932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999;398:708–13 [DOI] [PubMed] [Google Scholar]
  • 77.Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398:714–18 [DOI] [PubMed] [Google Scholar]
  • 78.Fawcett KA, Barroso I. The genetics of obesity: FTO leads the way. Trends Genet 2010;26:266–74 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Lohmander LS, Gerhardsson de Verdier M, Rollof J, Nilsson PM, Engström G. Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: a population-based prospective cohort study. Ann Rheum Dis 2009;68:490–6 [DOI] [PubMed] [Google Scholar]
  • 80.Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 2004;23:4315–29 [DOI] [PubMed] [Google Scholar]
  • 81.Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 2010;339:189–95 [DOI] [PubMed] [Google Scholar]
  • 82.Otto F, Kanegane H, Mundlos S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat 2002;19:209–16 [DOI] [PubMed] [Google Scholar]
  • 83.Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89:755–64 [DOI] [PubMed] [Google Scholar]
  • 84.Grcevic D, Jajic Z, Kovacic N, Lukic IK, Velagic V, Grubisic F, Ivcevic S, Marusic A. Peripheral blood expression profiles of bone morphogenetic proteins, tumor necrosis factor-superfamily molecules, and transcription factor Runx2 could be used as markers of the form of arthritis, disease activity, and therapeutic responsiveness. J Rheumatol 2010;37:246–56 [DOI] [PubMed] [Google Scholar]
  • 85.Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley BW. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA 2000;97:6379–84 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Castaño Betancourt MC, Cailotto F, Kerkhof HJ, Cornelis FM, Doherty SA, Hart DJ, Hofman A, Luyten FP, Maciewicz RA, Mangino M, Metrustry S, Muir K, Peters MJ, Rivadeneira F, Wheeler M, Zhang W, Arden N, Spector TD, Uitterlinden AG, Doherty M, Lories RJ, Valdes AM, van Meurs JB. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci USA 2012;109:8218–23 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, Ferreira T, Wood AR, Weyant RJ, Segrè AV, Speliotes EK, Wheeler E, Soranzo N, Park JH, Yang J, Gudbjartsson D, Heard-Costa NL, Randall JC, Qi L, Vernon Smith A, Mägi R, Pastinen T, Liang L, Heid IM, Luan J, Thorleifsson G, Winkler TW, Goddard ME, Sin Lo K, Palmer C, Workalemahu T, Aulchenko YS, Johansson A, Zillikens MC, Feitosa MF, Esko T, Johnson T, Ketkar S, Kraft P, Mangino M, Prokopenko I, Absher D, Albrecht E, Ernst F, Glazer NL, Hayward C, Hottenga JJ, Jacobs KB, Knowles JW, Kutalik Z, Monda KL, Polasek O, Preuss M, Rayner NW, Robertson NR, Steinthorsdottir V, Tyrer JP, Voight BF, Wiklund F, Xu J, Zhao JH, Nyholt DR, Pellikka N, Perola M, Perry JR, Surakka I, Tammesoo ML, Altmaier EL, Amin N, Aspelund T, Bhangale T, Boucher G, Chasman DI, Chen C, Coin L, Cooper MN, Dixon AL, Gibson Q, Grundberg E, Hao K, Juhani Junttila M, Kaplan LM, Kettunen J, König IR, Kwan T, Lawrence RW, Levinson DF, Lorentzon M, McKnight B, Morris AP, Müller M, Suh Ngwa J, Purcell S, Rafelt S, Salem RM, Salvi E, Sanna S, Shi J, Sovio U, Thompson JR, Turchin MC, Vandenput L, Verlaan DJ, Vitart V, White CC, Ziegler A, Almgren P, Balmforth AJ, Campbell H, Citterio L, De Grandi A, Dominiczak A, Duan J, Elliott P, Elosua R, Eriksson JG, Freimer NB, Geus EJ, Glorioso N, Haiqing S, Hartikainen AL, Havulinna AS, Hicks AA, Hui J, Igl W, Illig T, Jula A, Kajantie E, Kilpeläinen TO, Koiranen M, Kolcic I, Koskinen S, Kovacs P, Laitinen J, Liu J, Lokki ML, Marusic A, Maschio A, Meitinger T, Mulas A, Paré G, Parker AN, Peden JF, Petersmann A, Pichler I, Pietiläinen KH, Pouta A, Ridderstråle M, Rotter JI, Sambrook JG, Sanders AR, Schmidt CO, Sinisalo J, Smit JH, Stringham HM, Bragi Walters G, Widen E, Wild SH, Willemsen G, Zagato L, Zgaga L, Zitting P, Alavere H, Farrall M, McArdle WL, Nelis M, Peters MJ, Ripatti S, van Meurs JB, Aben KK, Ardlie KG, Beckmann JS, Beilby JP, Bergman RN, Bergmann S, Collins FS, Cusi D, den Heijer M, Eiriksdottir G, Gejman PV, Hall AS, Hamsten A, Huikuri HV, Iribarren C, Kähönen M, Kaprio J, Kathiresan S, Kiemeney L, Kocher T, Launer LJ, Lehtimäki T, Melander O, Mosley TH, Jr, Musk AW, Nieminen MS, O'Donnell CJ, Ohlsson C, Oostra B, Palmer LJ, Raitakari O, Ridker PM, Rioux JD, Rissanen A, Rivolta C, Schunkert H, Shuldiner AR, Siscovick DS, Stumvoll M, Tönjes A, Tuomilehto J, van Ommen GJ, Viikari J, Heath AC, Martin NG, Montgomery GW, Province MA, Kayser M, Arnold AM, Atwood LD, Boerwinkle E, Chanock SJ, Deloukas P, Gieger C, Grönberg H, Hall P, Hattersley AT, Hengstenberg C, Hoffman W, Lathrop GM, Salomaa V, Schreiber S, Uda M, Waterworth D, Wright AF, Assimes TL, Barroso I, Hofman A, Mohlke KL, Boomsma DI, Caulfield MJ, Cupples LA, Erdmann J, Fox CS, Gudnason V, Gyllensten U, Harris TB, Hayes RB, Jarvelin MR, Mooser V, Munroe PB, Ouwehand WH, Penninx BW, Pramstaller PP, Quertermous T, Rudan I, Samani NJ, Spector TD, Völzke H, Watkins H, Wilson JF, Groop LC, Haritunians T, Hu FB, Kaplan RC, Metspalu A, North KE, Schlessinger D, Wareham NJ, Hunter DJ, O'Connell JR, Strachan DP, Wichmann HE, Borecki IB, van Duijn CM, Schadt EE, Thorsteinsdottir U, Peltonen L, Uitterlinden AG, Visscher PM, Chatterjee N, Loos RJ, Boehnke M, McCarthy MI, Ingelsson E, Lindgren CM, Abecasis GR, Stefansson K, Frayling TM, Hirschhorn JN. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010;467:832–38 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC, Zhang Y, Washburn MP, Florens L, Shilatifard A. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 2010;24:574–89 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Mahmoudi T, Boj SF, Hatzis P, Li VS, Taouatas N, Vries RG, Teunissen H, Begthel H, Korving J, Mohammed S, Heck AJ, Clevers H. The leukemia-associated Mllt10/Af10-Dot1l are Tcf4/ β-catenin coactivators essential for intestinal homeostasis. PLoS Biol 2010;8:e1000539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, Koller DL, Li G, Liu CT, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao SM, Yerges-Armstrong LM, Zheng HF, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF, Aalto V, Alen M, Aragaki AK, Aspelund T, Center JR, Dailiana Z, Duggan DJ, Garcia M, Garcia-Giralt N, Giroux S, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Khusainova R, Kim GS, Kooperberg C, Koromila T, Kruk M, Laaksonen M, Lacroix AZ, Lee SH, Leung PC, Lewis JR, Masi L, Mencej-Bedrac S, Nguyen TV, Nogues X, Patel MS, Prezelj J, Rose LM, Scollen S, Siggeirsdottir K, Smith AV, Svensson O, Trompet S, Trummer O, van Schoor NM, Woo J, Zhu K, Balcells S, Brandi ML, Buckley BM, Cheng S, Christiansen C, Cooper C, Dedoussis G, Ford I, Frost M, Goltzman D, González-Macías J, Kähönen M, Karlsson M, Khusnutdinova E, Koh JM, Kollia P, Langdahl BL, Leslie WD, Lips P, Ljunggren Ö, Lorenc RS, Marc J, Mellström D, Obermayer-Pietsch B, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Ridker PM, Rousseau F, Slagboom PE, Tang NL, Urreizti R, Van Hul W, Viikari J, Zarrabeitia MT, Aulchenko YS, Castano-Betancourt M, Grundberg E, Herrera L, Ingvarsson T, Johannsdottir H, Kwan T, Li R, Luben R, Medina-Gómez C, Palsson ST, Reppe S, Rotter JI, Sigurdsson G, van Meurs JB, Verlaan D, Williams FM, Wood AR, Zhou Y, Gautvik KM, Pastinen T, Raychaudhuri S, Cauley JA, Chasman DI, Clark GR, Cummings SR, Danoy P, Dennison EM, Eastell R, Eisman JA, Gudnason V, Hofman A, Jackson RD, Jones G, Jukema JW, Khaw KT, Lehtimäki T, Liu Y, Lorentzon M, McCloskey E, Mitchell BD, Nandakumar K, Nicholson GC, Oostra BA, Peacock M, Pols HA, Prince RL, Raitakari O, Reid IR, Robbins J, Sambrook PN, Sham PC, Shuldiner AR, Tylavsky FA, van Duijn CM, Wareham NJ, Cupples LA, Econs MJ, Evans DM, Harris TB, Kung AW, Psaty BM, Reeve J, Spector TD, Streeten EA, Zillikens MC, Thorsteinsdottir U, Ohlsson C, Karasik D, Richards JB, Brown MA, Stefansson K, Uitterlinden AG, Ralston SH, Ioannidis JP, Kiel DP, Rivadeneira F. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 2012;44:491–501 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Kerkhof HJM, Meulenbelt I, Toru Akune T, Arden NK, Aromaa A, Bierma-Zeinstra SMA, Carr A, Cooper C, Dai J, Doherty M, Doherty SA, Felson D, Gonzalez A, Gordon A, Harilainen A, Hart DJ, Hauksson VD, Heliovaara M, Hofman A, Ikegawa S, Ingvarsson T, Jiang Q, Jonsson H, Jonsdottir I, Kawaguchi H, Kloppenburg M, Kujala UM, Lane NE, Leino-Arjas P, Lohmander S, Luyten FP, Malizos KN, Nakajima M, Nevitt MC, Pols HAP, Rivadeneira F, Shi D, Slagboom E, Spector TD, Stefansson K, Sudo A, Tamm A, Tamm AE, Tsezou A, Uchida A, Uitterlinden AG, Wilkinson JM, Yoshimura N, Valdes AM, van Meurs JBJ. Recommendations for standardization and phenotype definitions in genetic studies of osteoarthritis: the TREAT-OA consortium. Osteoarthritis Cartilage 2011;19:254–64 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Dieppe P, Judge A, Williams S, Ikwueke I, Guenther KP, Floeren M, Huber J, Ingvarsson T, Learmonth I, Lohmander LS, Nilsdotter A, Puhl W, Rowley D, Thieler R, Dreinhoefer K, EUROHIP Study Group Variations in the preoperative status of patients coming to primary hip replacement for osteoarthritis in European orthopaedic centres. BMC Musculoskelet Disord 2009;10:9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord 2008;9:116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Altman RD, Abadie E, Avouac B, Bouvenot G, Branco J, Bruyere O, Calvo G, Devogelaer JP, Dreiser RL, Herrero-Beaumont G, Kahan A, Kreutz G, Laslop A, Lemmel EM, Menkes CJ, Pavelka K, Van De Putte L, Vanhaelst L, Reginster JY, Group for Respect of Excellence and Ethics in Science (GREES) Total joint replacement of hip or knee as an outcome measure for structure modifying trials in osteoarthritis. Osteoarthritis Cartilage 2005;13:13–19 [DOI] [PubMed] [Google Scholar]
  • 95.Chitnavis J, Sinsheimer JS, Clipsham K, Loughlin J, Sykes B, Burge PD, Carr AJ. Genetic influences in end-stage osteoarthritis. Sibling risks of hip and knee replacement for idiopathic osteoarthritis. J Bone Joint Surg Br 1997;79:660–4 [DOI] [PubMed] [Google Scholar]
  • 96.Lanyon P, Muir K, Doherty S, Doherty M. Assessment of a genetic contribution to osteoarthritis of the hip: sibling study. BMJ 2000;321:1179–83 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Neame RL, Muir K, Doherty S, Doherty M. Genetic risk of knee osteoarthritis: a sibling study. Ann Rheum Dis 2004;63:1022–7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Van Meurs JBJ, Uitterlinden AG. Osteoarthritis year 2012 in review: genetics and genomics. Osteoarthritis Cartilage 2012;20:1470–76 [DOI] [PubMed] [Google Scholar]
  • 99.Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, van der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, Wain LV, Elliott KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL, Wellcome Trust Case Control Consortium. Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, Döring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O'Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen AL, McCarthy MI, O'Reilly PF, Peltonen L, Pouta A, de Jong PE, Snieder H, van Gilst WH, Clarke R, Goel A, Hamsten A, Peden JF, Seedorf U, Syvänen AC, Tognoni G, Lakatta EG, Sanna S, Scheet P, Schlessinger D, Scuteri A, Dörr M, Ernst F, Felix SB, Homuth G, Lorbeer R, Reffelmann T, Rettig R, Völker U, Galan P, Gut IG, Hercberg S, Lathrop GM, Zelenika D, Deloukas P, Soranzo N, Williams FM, Zhai G, Salomaa V, Laakso M, Elosua R, Forouhi NG, Völzke H, Uiterwaal CS, van der Schouw YT, Numans ME, Matullo G, Navis G, Berglund G, Bingham SA, Kooner JS, Connell JM, Bandinelli S, Ferrucci L, Watkins H, Spector TD, Tuomilehto J, Altshuler D, Strachan DP, Laan M, Meneton P, Wareham NJ, Uda M, Jarvelin MR, Mooser V, Melander O, Loos RJ, Elliott P, Abecasis GR, Caulfield M, Munroe PB. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009;41:666–76 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–78 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Doherty M, Courtney P, Doherty S, Jenkins W, Maciewicz RA, Muir K, Zhang W. Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis. Arthritis Rheum 2008;58:3172–82 [DOI] [PubMed] [Google Scholar]
  • 102.Nicholls AS, Kiran A, Pollard TCB, Hart DJ, Arden CPA, Spector T, Gill HS, Murray DW, Carr AJ, Arden NK. The association between hip morphology parameters and nineteen-year risk of end-stage osteoarthritis of the hip: a nested case–control study. Arthritis Rheum 2011;63:3392–400 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Karasik D, Zhou Y, Cupples LA, Hannan MT, Kiel DP, Demissie S. Bivariate genome-wide linkage analysis of femoral bone traits and leg lean mass: Framingham study. J Bone Miner Res 2009;24:710–18 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Lievense AM, Bierma-Zeinstra SM, Verhagen AP, Verhaar JA, Koes BW. Prognostic factors of progress of hip osteoarthritis: a systematic review. Arthritis Rheum 2002;47:556–62 [DOI] [PubMed] [Google Scholar]
  • 105.Lanyon P, Muir K, Doherty S, Doherty M. Influence of radiographic phenotype on risk of hip osteoarthritis within families. Ann Rheum Dis 2004;63:259–63 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.MacGregor AJ, Li Q, Spector TD, Williams FM. The genetic influence on radiographic osteoarthritis is site specific at the hand, hip and knee. Rheumatology 2009;48:277–80 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Pereira D, Peleteiro B, Araujo J, Branco J, Santos RA, Ramos E. The effect of osteoarthritis definition on prevalence and incidence estimates: a systematic review. Osteoarthritis Cartilage 2011;19:1270–85 [DOI] [PubMed] [Google Scholar]
  • 108.Richette P, Corvol M, Bardin T. Estrogens, cartilage, and osteoarthritis. Joint Bone Spine 2003;70:257–62 [DOI] [PubMed] [Google Scholar]
  • 109.Zhang W, Nuki G, Moskowitz RW, Abramson S, Altman RD, Arden NK, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS, Tugwell P. OARSI recommendations for the management of hip and knee osteoarthritis: part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage 2010;18:476–99 [DOI] [PubMed] [Google Scholar]
  • 110.Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. Nature 2009;461:747–53 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES