Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 15;93(21):11871–11876. doi: 10.1073/pnas.93.21.11871

Improved retroviral gene transfer into murine and Rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor.

C E Dunbar 1, N E Seidel 1, S Doren 1, S Sellers 1, A P Cline 1, M E Metzger 1, B A Agricola 1, R E Donahue 1, D M Bodine 1
PMCID: PMC38151  PMID: 8876230

Abstract

In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.

Full text

PDF
11871

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews R. G., Bartelmez S. H., Knitter G. H., Myerson D., Bernstein I. D., Appelbaum F. R., Zsebo K. M. A c-kit ligand, recombinant human stem cell factor, mediates reversible expansion of multiple CD34+ colony-forming cell types in blood and marrow of baboons. Blood. 1992 Aug 15;80(4):920–927. [PubMed] [Google Scholar]
  2. Andrews R. G., Bensinger W. I., Knitter G. H., Bartelmez S. H., Longin K., Bernstein I. D., Appelbaum F. R., Zsebo K. M. The ligand for c-kit, stem cell factor, stimulates the circulation of cells that engraft lethally irradiated baboons. Blood. 1992 Dec 1;80(11):2715–2720. [PubMed] [Google Scholar]
  3. Andrews R. G., Briddell R. A., Knitter G. H., Opie T., Bronsden M., Myerson D., Appelbaum F. R., McNiece I. K. In vivo synergy between recombinant human stem cell factor and recombinant human granulocyte colony-stimulating factor in baboons enhanced circulation of progenitor cells. Blood. 1994 Aug 1;84(3):800–810. [PubMed] [Google Scholar]
  4. Bensinger W. I., Weaver C. H., Appelbaum F. R., Rowley S., Demirer T., Sanders J., Storb R., Buckner C. D. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood. 1995 Mar 15;85(6):1655–1658. [PubMed] [Google Scholar]
  5. Bodine D. M., Karlsson S., Nienhuis A. W. Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8897–8901. doi: 10.1073/pnas.86.22.8897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bodine D. M., McDonagh K. T., Brandt S. J., Ney P. A., Agricola B., Byrne E., Nienhuis A. W. Development of a high-titer retrovirus producer cell line capable of gene transfer into rhesus monkey hematopoietic stem cells. Proc Natl Acad Sci U S A. 1990 May;87(10):3738–3742. doi: 10.1073/pnas.87.10.3738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bodine D. M., McDonagh K. T., Seidel N. E., Nienhuis A. W. Survival and retrovirus infection of murine hematopoietic stem cells in vitro: effects of 5-FU and method of infection. Exp Hematol. 1991 Mar;19(3):206–212. [PubMed] [Google Scholar]
  8. Bodine D. M., Moritz T., Donahue R. E., Luskey B. D., Kessler S. W., Martin D. I., Orkin S. H., Nienhuis A. W., Williams D. A. Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells. Blood. 1993 Oct 1;82(7):1975–1980. [PubMed] [Google Scholar]
  9. Bodine D. M., Seidel N. E., Gale M. S., Nienhuis A. W., Orlic D. Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cells mobilized into the peripheral blood by treatment with granulocyte colony-stimulating factor and stem cell factor. Blood. 1994 Sep 1;84(5):1482–1491. [PubMed] [Google Scholar]
  10. Bodine D. M., Seidel N. E., Orlic D. Bone marrow collected 14 days after in vivo administration of granulocyte colony-stimulating factor and stem cell factor to mice has 10-fold more repopulating ability than untreated bone marrow. Blood. 1996 Jul 1;88(1):89–97. [PubMed] [Google Scholar]
  11. Brenner M. K., Rill D. R., Holladay M. S., Heslop H. E., Moen R. C., Buschle M., Krance R. A., Santana V. M., Anderson W. F., Ihle J. N. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet. 1993 Nov 6;342(8880):1134–1137. doi: 10.1016/0140-6736(93)92122-a. [DOI] [PubMed] [Google Scholar]
  12. Cassel A., Cottler-Fox M., Doren S., Dunbar C. E. Retroviral-mediated gene transfer into CD34-enriched human peripheral blood stem cells. Exp Hematol. 1993 Apr;21(4):585–591. [PubMed] [Google Scholar]
  13. Chuck A. S., Palsson B. O. Consistent and high rates of gene transfer can be obtained using flow-through transduction over a wide range of retroviral titers. Hum Gene Ther. 1996 Apr 10;7(6):743–750. doi: 10.1089/hum.1996.7.6-743. [DOI] [PubMed] [Google Scholar]
  14. Donahue R. E., Kirby M. R., Metzger M. E., Agricola B. A., Sellers S. E., Cullis H. M. Peripheral blood CD34+ cells differ from bone marrow CD34+ cells in Thy-1 expression and cell cycle status in nonhuman primates mobilized or not mobilized with granulocyte colony-stimulating factor and/or stem cell factor. Blood. 1996 Feb 15;87(4):1644–1653. [PubMed] [Google Scholar]
  15. Dunbar C. E., Cottler-Fox M., O'Shaughnessy J. A., Doren S., Carter C., Berenson R., Brown S., Moen R. C., Greenblatt J., Stewart F. M. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood. 1995 Jun 1;85(11):3048–3057. [PubMed] [Google Scholar]
  16. Dunbar C. E., Emmons R. V. Gene transfer into hematopoietic progenitor and stem cells: progress and problems. Stem Cells. 1994 Nov;12(6):563–576. doi: 10.1002/stem.5530120604. [DOI] [PubMed] [Google Scholar]
  17. Eaves C. J. Peripheral blood stem cells reach new heights. Blood. 1993 Oct 1;82(7):1957–1959. [PubMed] [Google Scholar]
  18. Harrison D. E., Lerner C. P. Most primitive hematopoietic stem cells are stimulated to cycle rapidly after treatment with 5-fluorouracil. Blood. 1991 Sep 1;78(5):1237–1240. [PubMed] [Google Scholar]
  19. Kohn D. B., Weinberg K. I., Nolta J. A., Heiss L. N., Lenarsky C., Crooks G. M., Hanley M. E., Annett G., Brooks J. S., el-Khoureiy A. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med. 1995 Oct;1(10):1017–1023. doi: 10.1038/nm1095-1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kotani H., Newton P. B., 3rd, Zhang S., Chiang Y. L., Otto E., Weaver L., Blaese R. M., Anderson W. F., McGarrity G. J. Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther. 1994 Jan;5(1):19–28. doi: 10.1089/hum.1994.5.1-19. [DOI] [PubMed] [Google Scholar]
  21. Miller A. D., Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986 Aug;6(8):2895–2902. doi: 10.1128/mcb.6.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Molineux G., Pojda Z., Hampson I. N., Lord B. I., Dexter T. M. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood. 1990 Nov 15;76(10):2153–2158. [PubMed] [Google Scholar]
  23. Moore K. A., Deisseroth A. B., Reading C. L., Williams D. E., Belmont J. W. Stromal support enhances cell-free retroviral vector transduction of human bone marrow long-term culture-initiating cells. Blood. 1992 Mar 15;79(6):1393–1399. [PubMed] [Google Scholar]
  24. Nienhuis A. W., Donahue R. E., Karlsson S., Clark S. C., Agricola B., Antinoff N., Pierce J. E., Turner P., Anderson W. F., Nathan D. G. Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) shortens the period of neutropenia after autologous bone marrow transplantation in a primate model. J Clin Invest. 1987 Aug;80(2):573–577. doi: 10.1172/JCI113106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nolta J. A., Kohn D. B. Comparison of the effects of growth factors on retroviral vector-mediated gene transfer and the proliferative status of human hematopoietic progenitor cells. Hum Gene Ther. 1990 Fall;1(3):257–268. doi: 10.1089/hum.1990.1.3-257. [DOI] [PubMed] [Google Scholar]
  26. Riddell S. R., Elliott M., Lewinsohn D. A., Gilbert M. J., Wilson L., Manley S. A., Lupton S. D., Overell R. W., Reynolds T. C., Corey L. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med. 1996 Feb;2(2):216–223. doi: 10.1038/nm0296-216. [DOI] [PubMed] [Google Scholar]
  27. Schuening F. G., Kawahara K., Miller A. D., To R., Goehle S., Stewart D., Mullally K., Fisher L., Graham T. C., Appelbaum F. R. Retrovirus-mediated gene transduction into long-term repopulating marrow cells of dogs. Blood. 1991 Nov 15;78(10):2568–2576. [PubMed] [Google Scholar]
  28. Sorrentino B. P., Brandt S. J., Bodine D., Gottesman M., Pastan I., Cline A., Nienhuis A. W. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science. 1992 Jul 3;257(5066):99–103. doi: 10.1126/science.1352414. [DOI] [PubMed] [Google Scholar]
  29. Stewart F. M., Crittenden R. B., Lowry P. A., Pearson-White S., Quesenberry P. J. Long-term engraftment of normal and post-5-fluorouracil murine marrow into normal nonmyeloablated mice. Blood. 1993 May 15;81(10):2566–2571. [PubMed] [Google Scholar]
  30. Sykes M., Sachs D. H., Nienhuis A. W., Pearson D. A., Moulton A. D., Bodine D. M. Specific prolongation of skin graft survival following retroviral transduction of bone marrow with an allogeneic major histocompatibility complex gene. Transplantation. 1993 Jan;55(1):197–202. doi: 10.1097/00007890-199301000-00037. [DOI] [PubMed] [Google Scholar]
  31. Tong J., Gordon M. S., Srour E. F., Cooper R. J., Orazi A., McNiece I., Hoffman R. In vivo administration of recombinant methionyl human stem cell factor expands the number of human marrow hematopoietic stem cells. Blood. 1993 Aug 1;82(3):784–791. [PubMed] [Google Scholar]
  32. Tripathy S. K., Black H. B., Goldwasser E., Leiden J. M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med. 1996 May;2(5):545–550. doi: 10.1038/nm0596-545. [DOI] [PubMed] [Google Scholar]
  33. Xu L. C., Karlsson S., Byrne E. R., Kluepfel-Stahl S., Kessler S. W., Agricola B. A., Sellers S., Kirby M., Dunbar C. E., Brady R. O. Long-term in vivo expression of the human glucocerebrosidase gene in nonhuman primates after CD34+ hematopoietic cell transduction with cell-free retroviral vector preparations. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4372–4376. doi: 10.1073/pnas.92.10.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yan X. Q., Briddell R., Hartley C., Stoney G., Samal B., McNiece I. Mobilization of long-term hematopoietic reconstituting cells in mice by the combination of stem cell factor plus granulocyte colony-stimulating factor. Blood. 1994 Aug 1;84(3):795–799. [PubMed] [Google Scholar]
  35. de Revel T., Appelbaum F. R., Storb R., Schuening F., Nash R., Deeg J., McNiece I., Andrews R., Graham T. Effects of granulocyte colony-stimulating factor and stem cell factor, alone and in combination, on the mobilization of peripheral blood cells that engraft lethally irradiated dogs. Blood. 1994 Jun 15;83(12):3795–3799. [PubMed] [Google Scholar]
  36. von Melchner H., Housman D. E. The expression of neomycin phosphotransferase in human promyelocytic leukemia cells (HL60) delays their differentiation. Oncogene. 1988 Feb;2(2):137–140. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES