Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 15;93(21):11962–11967. doi: 10.1073/pnas.93.21.11962

Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia.

D C Javitt 1, M Steinschneider 1, C E Schroeder 1, J C Arezzo 1
PMCID: PMC38166  PMID: 8876245

Abstract

Working memory refers to the ability of the brain to store and manipulate information over brief time periods, ranging from seconds to minutes. As opposed to long-term memory, which is critically dependent upon hippocampal processing, critical substrates for working memory are distributed in a modality-specific fashion throughout cortex. N-methyl-D-aspartate (NMDA) receptors play a crucial role in the initiation of long-term memory. Neurochemical mechanisms underlying the transient memory storage required for working memory, however, remain obscure. Auditory sensory memory, which refers to the ability of the brain to retain transient representations of the physical features (e.g., pitch) of simple auditory stimuli for periods of up to approximately 30 sec, represents one of the simplest components of the brain working memory system. Functioning of the auditory sensory memory system is indexed by the generation of a well-defined event-related potential, termed mismatch negativity (MMN). MMN can thus be used as an objective index of auditory sensory memory functioning and a probe for investigating underlying neurochemical mechanisms. Monkeys generate cortical activity in response to deviant stimuli that closely resembles human MMN. This study uses a combination of intracortical recording and pharmacological micromanipulations in awake monkeys to demonstrate that both competitive and noncompetitive NMDA antagonists block the generation of MMN without affecting prior obligatory activity in primary auditory cortex. These findings suggest that, on a neurophysiological level, MMN represents selective current flow through open, unblocked NMDA channels. Furthermore, they suggest a crucial role of cortical NMDA receptors in the assessment of stimulus familiarity/unfamiliarity, which is a key process underlying working memory performance.

Full text

PDF
11962

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alho K., Woods D. L., Algazi A., Knight R. T., Nätänen R. Lesions of frontal cortex diminish the auditory mismatch negativity. Electroencephalogr Clin Neurophysiol. 1994 Nov;91(5):353–362. doi: 10.1016/0013-4694(94)00173-1. [DOI] [PubMed] [Google Scholar]
  2. Campbell M. J., Lewis D. A., Foote S. L., Morrison J. H. Distribution of choline acetyltransferase-, serotonin-, dopamine-beta-hydroxylase-, tyrosine hydroxylase-immunoreactive fibers in monkey primary auditory cortex. J Comp Neurol. 1987 Jul 8;261(2):209–220. doi: 10.1002/cne.902610204. [DOI] [PubMed] [Google Scholar]
  3. Catts S. V., Shelley A. M., Ward P. B., Liebert B., McConaghy N., Andrews S., Michie P. T. Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatry. 1995 Feb;152(2):213–219. doi: 10.1176/ajp.152.2.213. [DOI] [PubMed] [Google Scholar]
  4. Cotman C. W., Monaghan D. T., Ganong A. H. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci. 1988;11:61–80. doi: 10.1146/annurev.ne.11.030188.000425. [DOI] [PubMed] [Google Scholar]
  5. Cowan N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol Bull. 1988 Sep;104(2):163–191. doi: 10.1037/0033-2909.104.2.163. [DOI] [PubMed] [Google Scholar]
  6. Cowan N., Winkler I., Teder W., Nätänen R. Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). J Exp Psychol Learn Mem Cogn. 1993 Jul;19(4):909–921. doi: 10.1037//0278-7393.19.4.909. [DOI] [PubMed] [Google Scholar]
  7. Csépe V., Karmos G., Molnár M. Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat--animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol. 1987 Jun;66(6):571–578. doi: 10.1016/0013-4694(87)90103-9. [DOI] [PubMed] [Google Scholar]
  8. Daw N. W., Stein P. S., Fox K. The role of NMDA receptors in information processing. Annu Rev Neurosci. 1993;16:207–222. doi: 10.1146/annurev.ne.16.030193.001231. [DOI] [PubMed] [Google Scholar]
  9. Desimone R. The physiology of memory: recordings of things past. Science. 1992 Oct 9;258(5080):245–246. doi: 10.1126/science.1411523. [DOI] [PubMed] [Google Scholar]
  10. Funahashi S., Bruce C. J., Goldman-Rakic P. S. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas". J Neurosci. 1993 Apr;13(4):1479–1497. doi: 10.1523/JNEUROSCI.13-04-01479.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Funahashi S., Bruce C. J., Goldman-Rakic P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol. 1989 Feb;61(2):331–349. doi: 10.1152/jn.1989.61.2.331. [DOI] [PubMed] [Google Scholar]
  12. Goldman-Rakic P. S. Cellular basis of working memory. Neuron. 1995 Mar;14(3):477–485. doi: 10.1016/0896-6273(95)90304-6. [DOI] [PubMed] [Google Scholar]
  13. Goldman-Rakic P. S. Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci. 1988;11:137–156. doi: 10.1146/annurev.ne.11.030188.001033. [DOI] [PubMed] [Google Scholar]
  14. Goldman-Rakic P. S. Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci. 1994 Fall;6(4):348–357. doi: 10.1176/jnp.6.4.348. [DOI] [PubMed] [Google Scholar]
  15. Hari R., Hämäläinen M., Ilmoniemi R., Kaukoranta E., Reinikainen K., Salminen J., Alho K., Nätänen R., Sams M. Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neurosci Lett. 1984 Sep 7;50(1-3):127–132. doi: 10.1016/0304-3940(84)90474-9. [DOI] [PubMed] [Google Scholar]
  16. Javitt D. C., Doneshka P., Grochowski S., Ritter W. Impaired mismatch negativity generation reflects widespread dysfunction of working memory in schizophrenia. Arch Gen Psychiatry. 1995 Jul;52(7):550–558. doi: 10.1001/archpsyc.1995.03950190032005. [DOI] [PubMed] [Google Scholar]
  17. Javitt D. C., Doneshka P., Zylberman I., Ritter W., Vaughan H. G., Jr Impairment of early cortical processing in schizophrenia: an event-related potential confirmation study. Biol Psychiatry. 1993 Apr 1;33(7):513–519. doi: 10.1016/0006-3223(93)90005-x. [DOI] [PubMed] [Google Scholar]
  18. Javitt D. C., Schroeder C. E., Steinschneider M., Arezzo J. C., Vaughan H. G., Jr Demonstration of mismatch negativity in the monkey. Electroencephalogr Clin Neurophysiol. 1992 Jul;83(1):87–90. doi: 10.1016/0013-4694(92)90137-7. [DOI] [PubMed] [Google Scholar]
  19. Javitt D. C., Steinschneider M., Schroeder C. E., Vaughan H. G., Jr, Arezzo J. C. Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res. 1994 Dec 26;667(2):192–200. doi: 10.1016/0006-8993(94)91496-6. [DOI] [PubMed] [Google Scholar]
  20. Javitt D. C., Zukin S. R. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991 Oct;148(10):1301–1308. doi: 10.1176/ajp.148.10.1301. [DOI] [PubMed] [Google Scholar]
  21. Javitt D. C., Zylberman I., Zukin S. R., Heresco-Levy U., Lindenmayer J. P. Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry. 1994 Aug;151(8):1234–1236. doi: 10.1176/ajp.151.8.1234. [DOI] [PubMed] [Google Scholar]
  22. Lewis D. A., Campbell M. J., Foote S. L., Goldstein M., Morrison J. H. The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci. 1987 Jan;7(1):279–290. doi: 10.1523/JNEUROSCI.07-01-00279.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miller E. K., Li L., Desimone R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci. 1993 Apr;13(4):1460–1478. doi: 10.1523/JNEUROSCI.13-04-01460.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moerschbaecher J. M., Thompson D. M. Effects of phencyclidine, pentobarbital, and d-amphetamine on the acquisition and performance of conditional discriminations in monkeys. Pharmacol Biochem Behav. 1980 Dec;13(6):887–894. doi: 10.1016/0091-3057(80)90224-5. [DOI] [PubMed] [Google Scholar]
  25. Schroeder C. E., Tenke C. E., Givre S. J., Arezzo J. C., Vaughan H. G., Jr Laminar analysis of bicuculline-induced epileptiform activity in area 17 of the awake macaque. Brain Res. 1990 May 7;515(1-2):326–330. doi: 10.1016/0006-8993(90)90617-k. [DOI] [PubMed] [Google Scholar]
  26. Shelley A. M., Ward P. B., Catts S. V., Michie P. T., Andrews S., McConaghy N. Mismatch negativity: an index of a preattentive processing deficit in schizophrenia. Biol Psychiatry. 1991 Nov 15;30(10):1059–1062. doi: 10.1016/0006-3223(91)90126-7. [DOI] [PubMed] [Google Scholar]
  27. Steinschneider M., Tenke C. E., Schroeder C. E., Javitt D. C., Simpson G. V., Arezzo J. C., Vaughan H. G., Jr Cellular generators of the cortical auditory evoked potential initial component. Electroencephalogr Clin Neurophysiol. 1992 Mar-Apr;84(2):196–200. doi: 10.1016/0168-5597(92)90026-8. [DOI] [PubMed] [Google Scholar]
  28. Strous R. D., Cowan N., Ritter W., Javitt D. C. Auditory sensory ("echoic") memory dysfunction in schizophrenia. Am J Psychiatry. 1995 Oct;152(10):1517–1519. doi: 10.1176/ajp.152.10.1517. [DOI] [PubMed] [Google Scholar]
  29. Thompson D. M., Winsauer P. J., Mastropaolo J. Effects of phencyclidine, ketamine and MDMA on complex operant behavior in monkeys. Pharmacol Biochem Behav. 1987 Feb;26(2):401–405. doi: 10.1016/0091-3057(87)90136-5. [DOI] [PubMed] [Google Scholar]
  30. Williams G. V., Goldman-Rakic P. S. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature. 1995 Aug 17;376(6541):572–575. doi: 10.1038/376572a0. [DOI] [PubMed] [Google Scholar]
  31. Wilson F. A., O'Scalaidhe S. P., Goldman-Rakic P. S. Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4009–4013. doi: 10.1073/pnas.91.9.4009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson F. A., Scalaidhe S. P., Goldman-Rakic P. S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science. 1993 Jun 25;260(5116):1955–1958. doi: 10.1126/science.8316836. [DOI] [PubMed] [Google Scholar]
  33. Winsberg B. G., Javitt D. C., Silipo G. S., Doneshka P. Mismatch negativity in hyperactive children: effects of methylphenidate. Psychopharmacol Bull. 1993;29(2):229–233. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES