Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 1;93(20):10541–10542. doi: 10.1073/pnas.93.20.10541

The weaver mouse: a most cantankerous rodent.

K Herrup 1
PMCID: PMC38187  PMID: 8855212

Full text

PDF
10541

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blatt G. J., Eisenman L. M. A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol. 1985 Feb 1;232(1):117–128. doi: 10.1002/cne.902320110. [DOI] [PubMed] [Google Scholar]
  2. Gao W. Q., Hatten M. E. Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex. Science. 1993 Apr 16;260(5106):367–369. doi: 10.1126/science.8469990. [DOI] [PubMed] [Google Scholar]
  3. Gao W. Q., Liu X. L., Hatten M. E. The weaver gene encodes a nonautonomous signal for CNS neuronal differentiation. Cell. 1992 Mar 6;68(5):841–854. doi: 10.1016/0092-8674(92)90028-b. [DOI] [PubMed] [Google Scholar]
  4. Goldowitz D. Cell allocation in mammalian CNS formation: evidence from murine interspecies aggregation chimeras. Neuron. 1989 Dec;3(6):705–713. doi: 10.1016/0896-6273(89)90239-0. [DOI] [PubMed] [Google Scholar]
  5. Harrison S. M., Roffler-Tarlov S. Male-sterile phenotype of the neurological mouse mutant weaver. Dev Dyn. 1994 May;200(1):26–38. doi: 10.1002/aja.1002000104. [DOI] [PubMed] [Google Scholar]
  6. Hatten M. E., Liem R. K., Mason C. A. Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J Neurosci. 1986 Sep;6(9):2676–2683. doi: 10.1523/JNEUROSCI.06-09-02676.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Herrup K., Trenkner E. Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action. Neuroscience. 1987 Dec;23(3):871–885. doi: 10.1016/0306-4522(87)90164-3. [DOI] [PubMed] [Google Scholar]
  8. Karschin C., Dissmann E., Stühmer W., Karschin A. IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J Neurosci. 1996 Jun 1;16(11):3559–3570. doi: 10.1523/JNEUROSCI.16-11-03559.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kofuji P., Hofer M., Millen K. J., Millonig J. H., Davidson N., Lester H. A., Hatten M. E. Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron. 1996 May;16(5):941–952. doi: 10.1016/s0896-6273(00)80117-8. [DOI] [PubMed] [Google Scholar]
  10. Komuro H., Rakic P. Modulation of neuronal migration by NMDA receptors. Science. 1993 Apr 2;260(5104):95–97. doi: 10.1126/science.8096653. [DOI] [PubMed] [Google Scholar]
  11. Patil N., Cox D. R., Bhat D., Faham M., Myers R. M., Peterson A. S. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet. 1995 Oct;11(2):126–129. doi: 10.1038/ng1095-126. [DOI] [PubMed] [Google Scholar]
  12. Rakic P., Sidman R. L. Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci U S A. 1973 Jan;70(1):240–244. doi: 10.1073/pnas.70.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rezai Z., Yoon C. H. Abnormal rate of granule cell migration in the cerebellum of "Weaver" mutant mice. Dev Biol. 1972 Sep;29(1):17–26. doi: 10.1016/0012-1606(72)90039-5. [DOI] [PubMed] [Google Scholar]
  14. Roffler-Tarlov S., Martin B., Graybiel A. M., Kauer J. S. Cell death in the midbrain of the murine mutation weaver. J Neurosci. 1996 Mar 1;16(5):1819–1826. doi: 10.1523/JNEUROSCI.16-05-01819.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sekiguchi M., Nowakowski R. S., Nagato Y., Tanaka O., Guo H., Madoka M., Abe H. Morphological abnormalities in the hippocampus of the weaver mutant mouse. Brain Res. 1995 Oct 23;696(1-2):262–267. doi: 10.1016/0006-8993(95)00974-u. [DOI] [PubMed] [Google Scholar]
  16. Slesinger P. A., Patil N., Liao Y. J., Jan Y. N., Jan L. Y., Cox D. R. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron. 1996 Feb;16(2):321–331. doi: 10.1016/s0896-6273(00)80050-1. [DOI] [PubMed] [Google Scholar]
  17. Sotelo C., Changeux J. P. Bergmann fibers and granular cell migration in the cerebellum of homozygous weaver mutant mouse. Brain Res. 1974 Sep 13;77(3):484–491. doi: 10.1016/0006-8993(74)90636-2. [DOI] [PubMed] [Google Scholar]
  18. Surmeier D. J., Mermelstein P. G., Goldowitz D. The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11191–11195. doi: 10.1073/pnas.93.20.11191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Trenkner E. The role of taurine and glutamate during early postnatal cerebellar development of normal and weaver mutant mice. Adv Exp Med Biol. 1990;268:239–244. doi: 10.1007/978-1-4684-5769-8_27. [DOI] [PubMed] [Google Scholar]
  20. Triarhou L. C., Norton J., Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res. 1988;70(2):256–265. doi: 10.1007/BF00248351. [DOI] [PubMed] [Google Scholar]
  21. Vogelweid C. M., Verina T., Norton J., Harruff R., Ghetti B. Hypospermatogenesis is the cause of infertility in the male weaver mutant mouse. J Neurogenet. 1993 Dec;9(2):89–104. doi: 10.3109/01677069309083452. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES