Skip to main content
Microbial Biotechnology logoLink to Microbial Biotechnology
. 2011 Aug 17;4(5):585–602. doi: 10.1111/j.1751-7915.2010.00239.x

Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea

Takashi Narihiro 1, Yuji Sekiguchi 2,*
PMCID: PMC3819009  PMID: 21375721

Summary

For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers.

Introduction

Methanogenic archaea (methanogens) are strictly anaerobic microorganisms producing methane as a result of their anaerobic respiration (Schink, 1997; Thauer, 1998). For methanogenesis, they can utilize a limited number of substrates such as carbon dioxide, acetate and methyl‐group‐containing compounds under anoxic conditions (Liu and Whitman, 2008). Most of the known methanogens are hydrogenotrophs reducing carbon dioxide to form methane; among them, formate is also often utilized as the electron donor instead of hydrogen. Some of the hydrogenotrophic methanogens can also utilize secondary alcohols such as 2‐propanol as the electron donor. Acetate is an important intermediate substance in the anaerobic decomposition of organic matter, and is generally exclusively utilized by limited groups of methanogens to form methane under anoxic conditions, where external electron acceptors other than carbon dioxide are unavailable. Methyl‐group‐containing compounds, such as methanol and methylamines, are also utilized by some methanogens through disproportionation of methyl groups.

Methanogens are frequently found in anoxic environments, such as rice paddy fields (Iino et al., 2010; Sakai et al., 2010), wetlands (Cadillo‐Quiroz et al., 2009; Bräuer et al., 2010), permafrost (Krivushin et al., 2010; Shcherbakova et al., 2010), landfills (Laloui‐Carpentier et al., 2006), subsurfaces (Doerfert et al., 2009; Mochimaru et al., 2009) and ruminants (Frey et al., 2009), which are known to be the major sources of atmospheric methane. It has been estimated that the annual global emission of methane is 500–600 Tg, and atmospheric methane concentration has risen threefold over the past 200 years (Liu and Whitman, 2008). With the increased interests in global climate change and environmental issues, studies on the diversity and ecophysiological functions of methanogens in such environments have been extensively conducted using cultivation‐dependent and cultivation‐independent approaches (Liu and Whitman, 2008). In addition to such environments, methanogens play key roles in fields of anaerobic digestion technology, which is widely used as a means for treating municipal and industrial waste/wastewater containing high levels of organic compounds (Sekiguchi, 2006; Narihiro and Sekiguchi, 2007; Talbot et al., 2008; Tabatabaei et al., 2010). Methanogens are often critical components of such bioconversion systems, resulting in the recovery of gaseous methane from those wastes as reusable energy resource. To better manage the bioconversion systems and achieve a higher efficiency in removing organic compounds in wastes, methanogens in these systems have been extensively studied and the quantitative monitoring of such methanogenic populations in these systems has been conducted (Narihiro and Sekiguchi, 2007).

To explore the ecological significance of methanogens in these natural and engineered ecosystems, identification and quantification techniques for different methanogen groups are indispensable. For the purpose, analyses of membrane lipid (Weijers et al., 2004; Strapoc et al., 2008), autofluorescence (Neu et al., 2002; Tung et al., 2005; Mochimaru et al., 2007), activity measurement (Lehmann‐Richter et al., 1999; Weijers et al., 2004) and immunoenzymatic profiling (Visser et al., 1991; Sorensen and Ahring, 1997) have been used. In addition to these methods, cultivation‐independent, nucleic acid‐based analysis by using oligonucleotide probe/primers, such as membrane hybridization, fluorescence in situ hybridization (FISH), gene cloning, quantitative polymerase chain reaction (qPCR), and cleavage method with ribonuclease H (RNase H) were most widely and frequently used as means to detect and quantify methanogens more specifically and accurately. In this review, we present a catalogue of previously developed oligonucleotide probes/primers targeting genes of methanogens. Particular emphasis is placed on the probes/primers for 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), which are generally used for the taxonomic classification of methanogens (Friedrich, 2005; Liu and Whitman, 2008).

Phylogeny of methanogens

All the methanogens isolated and characterized to date have been classified into the phylum Euryarchaeota of the domain Archaea (Garrity et al., 2007). They are assigned into 33 genera of the classes ‘Methanomicrobia’, Methanobacteria, Methanococci and Methanopyri (Fig. 1, Table 1). The class ‘Methanomicrobia’ is the most phylogenetically and physiologically diverse group of methanogens consisting of three orders (Methanosarcinales, Methanomicrobiales and Methanocellales); 23 genera belonging to seven families (Fig. 1, Table 1). Within the order Methanosarcinales, the genera Methanosarcina and Methanosaeta are known to play a key role in the conversion of acetate into methane in various anaerobic environments, and the rest are known to metabolize relatively broad ranges of substrates, such as hydrogen, methanol and methylamines (Garrity and Holt, 2001). Known members of the order Methanomicrobiales are all hydrogenotrophs, and some of them are often observed in anaerobic environments as important hydrogen scavengers (Liu and Whitman, 2008). Members of the class Methanobacteria, consisting of the families Methanobacteriaceae and Methanothermaceae, are recognized as important hydrogenotrophs that have also been widely found in anaerobic ecosystems (Garrity and Holt, 2001). Methanobacteriaceae comprises four genera, Methanobacterium, Methanosphaera, Methanobrevibacter and Methanothermobacter. The class Methanococci includes the families Methanococcaceae and Methanocaldococcaceae, which are widely distributed in natural ecosystems such as marine sediments and deep sea geothermal sediments (Liu and Whitman, 2008). The class Methanopyri consists of solely the genus Methanopyrus, a hyperthermophilic, hydrogenotrophic methanogen isolated from the deep‐sea hydrothermal field (Takai et al., 2008).

Figure 1.

Figure 1

Phylogeny and taxonomy of methanogens. The neighbour‐joining tree was constructed on the basis of 16S rRNA gene sequences using the ARB package (Ludwig et al., 2004) with the data set (Yarza et al., 2008) provided from silva databases (http://silva.mpi‐bremen.de/), showing representative species of methanogens that have been described to date.

Table 1.

Oligonucleotide probes and primers targeting the 16S rRNA gene of methanogens.

Target group Probe name Probe sequence (5′–3′)a Application Probe length (mer) Reference
Most methanogens Arch f2b TTCYGGTTGATCCYGCCRGA PCR (forward) 20 Skillman et al. (2004)
Arch r1386 GCGGTGTGTGCAAGGAGC PCR (reverse) 18 Skillman et al. (2004)
A1f TCYGKTTGATCCYGSCRGAG PCR (forward), DGGE 20 Embley et al. (1992)
A1100r TGGGTCTCGCTCGTTG PCR (forward), DGGE 16 Embley et al. (1992)
Met83F ACKGCTCAGTAACAC PCR (forward) 15 Wright and Pimm (2003)
Met86F GCTCAGTAACACGTGG PCR (forward) 16 Wright and Pimm (2003)
Met448F GGTGCCAGCCGCCGC sequencing 15 Wright and Pimm (2003)
Met1027F GTCAGGCAACGAGCGAGACC sequencing 20 Wright and Pimm (2003)
Met1340R CGGTGTGTGCAAGGAG PCR (reverse) 16 Wright and Pimm (2003)
109f ACKGCTCAGTAACACGT PCR (forward) 17 Grosskopf et al. (1998)
146f GGSATAACCYCGGGAAAC PCR (forward) 18 Marchesi et al. (2001)
1324r GCGAGTTACAGCCCWCRA PCR (reverse) 18 Marchesi et al. (2001)
ARC344f ACGGGGYGCAGCAGGCGCGA PCR (forward), DGGE 20 Casamayor et al. (2001)
25f CYGGTYGATYCTGCCRG PCR (forward) 17 Dojka et al. (1998)
1391r GACGGGCGGTGTGTRCA PCR (reverse) 17 Barns et al. (1994)
A24f TCYGKTTGATCCYGSCRGA PCR (forward), DGGE 19 Yu et al. (2008)
A357f CCCTACGGGGCGCAGCAG PCR (forward), DGGE 18 Yu et al. (2008)
A329r TGTCTCAGGTTCCATCTCCG PCR (reverse), DGGE 20 Yu et al. (2008)
A348r CCCCRTAGGGCCYGG PCR (reverse), DGGE 15 Yu et al. (2008)
A693r GGATTACARGATTTC PCR (reverse), DGGE 15 Yu et al. (2008)
Met630F GGATTAGATACCCSGGTAGT qPCR (forward), DGGE 20 Hook et al. (2009)
Met803R GTTGARTCCAATTAAACCGCA qPCR (reverse), DGGE 21 Hook et al. (2009)
A1040f GAGAGGWGGTGCATGGCC PCR (forward), DGGE 18 Reysenbach and Pace (1995)
ARC344 TCGCGCCTGCTGCICCCCGT MH 20 Raskin et al. (1994b)
ARC915 GTGCTCCCCCGCCAATTCCT PCR (reverse), DGGE, MH, FISH 20 Raskin et al. (1994b)
MER1 GGGCACGGGTCTCGCT PCR (reverse) 16 Hales et al. (1996)
Class Methanomicrobia 1068R ATGCTTCACAGTACGAAC PCR (reverse) 18 Banning et al. (2005)
CMSMM1068m GGATGCTTCACAGTACGAAC RNase H 20 Narihiro et al. (2009b)
Order Methanocellales
Family Methanocellaceae
Genus Methanocella SANAE1136 GTGTACTCGCCCTCCTCG FISH 18 Sakai et al. (2007)
Order Methanomicrobiales MG1200 CGGATAATTCGGGGCATGCTG MH, FISH 21 Raskin et al. (1994b)
MG1200m CCGGATAATTCGGGGCATGCTG RNase H 22 Narihiro et al. (2009b)
M(SA/MI)355 GTAAAGTTTTCGCGCCTG MH 18 Ovreås et al. (1997)
MMB282F ATCGRTACGGGTTGTGGG qPCR (forward) 18 Yu et al. (2005)
MMB749F TYCGACAGTGAGGRACGAAAGCTG qPCR (probe) 24 Yu et al. (2005)
MMB832R CACCTAACGCRCATHGTTTAC qPCR (reverse) 21 Yu et al. (2005)
Family Methanomicrobiaceae
Genus Methanoculleus 298F GGAGCAAGAGCCCGGAGT qPCR (forward) 18 Franke‐Whittle et al. (2009a)
586R CCAAGAGACTTAACAACCCA qPCR (reverse) 20 Franke‐Whittle et al. (2009a)
F2SC668 TCCTACCCCCGAAGTACCCCTC RNase H 22 Narihiro et al. (2009b)
F2SC732 TCGAAGCCGTTCTGGTGAGGCG RNase H 22 Narihiro et al. (2009b)
AR934F AGGAATTGGCGGGGGAGCAC qPCR (forward) 20 Shigematsu et al. (2003)
MCU1023TAQ GAATGATTGCCGGGCTGAAGACTC qPCR (probe) 24 Shigematsu et al. (2003)
MG1200b CCGGATAATTCGGGGCATGCTG qPCR (reverse) 22 Shigematsu et al. (2003)
Species M. thermophilus Mc412f CTGGGTGTCTAAAACACACCCAA qPCR (forward) 23 Hori et al. (2006)
Mc578r ATTGCCAGTATCTCTTAG qPCR (reverse) 18 Hori et al. (2006)
SMCUT1253 GCCTTTCGGCGTCGATACCC RNase H 20 Narihiro et al. (2009b)
Genus Methanofollis F3SC984 CATATCGCTGTCCTACCCGG RNase H 20 Narihiro et al. (2009b)
Genus Methanogenium GMG1128 CGTTCCGGAGAACAAGCTAG RNase H 20 Narihiro et al. (2009b)
Genus Methanomicrobium GMM829 CTCGTAGTTACAGGCACACC FISH, RNase H 20 Yanagita et al. (2000)
Genus Methanoplanus
Species M. limicola SMPL623c TTCTCTTAAACGCCTGCAGG RNase H 20 Narihiro et al. (2009b)
Species M. endosynbiosus SMPL623c TTCTCTTAAACGCCTGCAGG RNase H 20 Narihiro et al. (2009b)
Species M. petrolearius SMPP1252d CTTCTCAGTGTCGTTGCTCA RNase H 20 Narihiro et al. (2009b)
Genus Methanolacinia SMPP1252d CTTCTCAGTGTCGTTGCTCA RNase H 20 Narihiro et al. (2009b)
Family Methanospirillaceae
Genus Methanospirillum F7SC1260 TATCCTCACCTCTCGGTGTC RNase H 20 Narihiro et al. (2009b)
MSP1025TAQ GAATGATAGTCGGGATGAAGACTCTA qPCR (probe) 26 Tang et al. (2005)
Genus Methanosphaerula
Genus Methanolinea NOBI109f ACTGCTCAGTAACACGT qPCR (forward) 17 Imachi et al. (2008)
NOBI633 GATTGCCAGTTTCTCCTG qPCR (reverse), FISH 18 Imachi et al. (2008)
Family Methanocorpusculaceae
Genus Methanocorpusculum F6SC393e GACAGGCACTCAGGGTTTCC RNase H 20 Narihiro et al. (2009b)
GMCP489 GCCCTGCCCTTTCTTCACAT RNase H 20 Narihiro et al. (2009b)
Family incertae sedis
Genus Methanocalculus F6SC393e GACAGGCACTCAGGGTTTCC RNase H 20 Narihiro et al. (2009b)
GMCL488 CCCCGCCCTTTCTCCTGGTG RNase H 20 Narihiro et al. (2009b)
Genus Methanoregula
Species M. boonei 6A8 644 TCTTCCGGTCCCTAGCCTGCCA FISH 22 Bräuer et al. (2006)
Species M. formicica SMSP129 TATCCCCTTCCATAGGGTAGATT FISH 23 Yashiro et al. (2009)
Order Methanosarcinales MSMX860 GGCTCGCTTCACGGCTTCCCT MH 21 Raskin et al. (1994b)
MSSH859 TCGCTTCACGGCTTCCCT FISH 18 Boetius et al. (2000)
MSr r859 TCGCTTCACGGCTTCCCTG PCR (reverse) 19 Skillman et al. (2004)
MSMX860m GCTCGCTTCACGGCTTCCCT RNase H 20 Narihiro et al. (2009b)
MSL812F GTAAACGATRYTCGCTAGGT qPCR (forward) 20 Yu et al. (2005)
MSL860F AGGGAAGCCGTGAAGCGARCC qPCR (probe) 21 Yu et al. (2005)
MSL1159R GGTCCCCACAGWGTACC qPCR (reverse) 17 Yu et al. (2005)
Family Methanosaetaceae
Genus Methanosaeta MX825 TCGCACCGTGGCCGACACCTAGC MH, FISH 23 Raskin et al. (1994b)
MX825mix TCGCACCGTGGCYGACACCTAGC RNase H 23 Narihiro et al. (2009b)
MX1361 ACGTATTCACCGCGTTCTGT FISH 20 Crocetti et al. (2006)
S‐G‐Msae‐0332‐a‐A‐22 TTAGGTCCGGGATGCXCCACGT MH, FISH 22 Zheng and Raskin (2000)
Mst702F TAATC CTYGA RGGAC CACCA qPCR (forward) 20 Yu et al. (2005)
Mst753F ACGGC AAGGG ACGAA AGCTA GG qPCR (probe) 22 Yu et al. (2005)
Mst862R CCTAC GGCAC CRACM AC qPCR (reverse) 17 Yu et al. (2005)
MS1b CCGGCCGGATAAGTCTCTTGA qPCR (forward) 21 Shigematsu et al. (2003)
SAE761TAQ ACCAGAACGGACCTGACGGCAAGG qPCR (probe) 24 Shigematsu et al. (2003)
SAE835R GACAACGGTCGCACCGTGGCC qPCR (reverse) 21 Shigematsu et al. (2003)
S‐F‐Msaet‐0387‐S‐a‐21 GATAAGGGRAYCTCGAGTGCY qPCR (forward) 21 Sawayama et al. (2004)
S‐F‐Msaet‐0540‐A‐a‐31 AGACCCAATAAHARCGGTTACCACTCGRGCC qPCR (probe) 31 Sawayama et al. (2004)
S‐F‐Msaet‐0573‐A‐a‐17 GGCCGRCTACAGACCCT qPCR (reverse) 17 Sawayama et al. (2004)
Species M. concilii Rotcl1 CTCCCGGCCTCGAGCCAGAC FISH 20 Zepp Falz et al. (1999)
MS1 CCGGATAAGTCTCTTGA MH 17 Rocheleau et al. (1999)
MS2 CTGAATGAGAGCGCTTTCTTT MH 21 Rocheleau et al. (1999)
MS5 GGCCACGGTGCGACCGTTGTCG MH, FISH 22 Rocheleau et al. (1999)
MMX1273 GGTTTTAGGAGATTCCCGTC RNase H 20 Narihiro et al. (2009b)
GTMS393m ACCCAGCACTCGAGGTCCCC RNase H 20 Narihiro et al. (2009b)
Species M. thermophila Ms413f CAGATGTGTAAAATACATCTGTT qPCR (forward) 23 Hori et al. (2006)
Ms578r TCTGGCAGTATCCACCGA qPCR (reverse) 18 Hori et al. (2006)
TMX745 CCCTTGCCGTCGGATCCGTT RNase H 20 Narihiro et al. (2009b)
Family Methanosarcinaceae MS1414 CTCACCCATACCTCACTCGGG MH, FISH 21 Raskin et al. (1994b)
EelMS240f CTATCAGGTTGTAGTGGG FISH 18 Boetius et al. (2000)
Msc380F GAAACCGYGATAAGGGGA qPCR (forward) 18 Yu et al. (2005)
Msc492F TTAGCAAGGGCCGGGCAA qPCR (probe) 18 Yu et al. (2005)
Msc828R TAGCGARCATCGTTTACG qPCR (reverse) 18 Yu et al. (2005)
R15Fg GCTACACGCGGGCTACAATGA qPCR (forward) 21 Zhang et al. (2008a)
FMSC394 ATGCTGGCACTCGGTGTCCC RNase H 20 Narihiro et al. (2009b)
MS821mh GCCATGCCTGACACCTAGCG RNase H 20 Narihiro et al. (2009b)
Genus Methanimicrococcus GMIB1254 CACCTTTCGGTGTAGTTGCC RNase H 20 Narihiro et al. (2009b)
Genus Methanosarcina MS821 CGCCATGCCTGACACCTAGCGAGC MH, FISH 24 Raskin et al. (1994b)
SARCI551 GACCCAATAATCACGATCAC FISH 20 Sorensen and Ahring (1997)
SARCI645 TCCCGGTTCCAAGTCTGGC FISH 19 Sorensen and Ahring (1997)
MB1 TTTGGTCAGTCCTCCGG MH 17 Rocheleau et al. (1999)
MB3 CCAGACTTGGAACCG MH 15 Rocheleau et al. (1999)
MB4 TTTATGCGTAAAATGGATT MH, FISH 19 Rocheleau et al. (1999)
240F CCTATCAGGTAGTAGTGGGTGTAAT qPCR (forward) 25 Franke‐Whittle et al. (2009a)
589R CCCGGAGGACTGACCAAA qPCR (reverse) 18 Franke‐Whittle et al. (2009a)
MB1b CGGTTTGGTCAGTCCTCCGG qPCR (forward) 20 Shigematsu et al. (2003)
SAR761TAQ ACCAGAACGGGTTCGACGGTGAGG qPCR (probe) 24 Shigematsu et al. (2003)
SAR835R AGACACGGTCGCGCCATGCCT qPCR (reverse) 21 Shigematsu et al. (2003)
S‐G‐Msar‐0450‐S‐a‐19 TAGCAAGGGCCGGGCAAGA qPCR (forward) 19 Sawayama et al. (2006)
S‐P‐Msar‐0540‐A‐a‐31 AGACCCAATAATCACGATCACCACTCGGGCC qPCR (probe) 31 Sawayama et al. (2006)
S‐G‐Msar‐0589‐S‐a‐20 ATCCCGGAGGACTGACCAAA qPCR (reverse) 20 Sawayama et al. (2006)
Genus Methanococcoides GMCO441 ACATGCCGTTTACACATGTG RNase H 20 Narihiro et al. (2009b)
Genus Methanohalobium GMHB842 TCGGCACTAGGAACGGCCGT RNase H 20 Narihiro et al. (2009b)
Genus Methanohalophilus GMHP1258 CCGTCACTTTTCAGTGTAGG RNase H 20 Narihiro et al. (2009b)
Genus Methanolobus GMLB834 TGAAACGGTCGCACCGTCCCAG RNase H 22 Narihiro et al. (2009b)
Species M. psychrophilus R15F GCTACACGCGGGCTACAATGA qPCR (forward) 21 Zhang et al. (2008a)
R15R AATTTAGGTTCGAACACGGCATGAA qPCR (reverse) 25 Zhang et al. (2008a)
Genus Methanomethylovorans
Genus Methanosalsum GMSS261 GTCGGCTAGCAGGTACCTTG RNase H 20 Narihiro et al. (2009b)
Family Methermicoccaceae
Genus Methermicoccus
Class Methanobacteria
Order Methanobacteriales MB310 CTTGTCTCAGGTTCCATCTCCG MH 22 Raskin et al. (1994b)
MB311 ACCTTGTCTCAGGTTCCATCTCC FISH 23 Crocetti et al. (2006)
Mbac f331 CTTGTCTCAGGTTCCATCTC PCR 20 Skillman et al. (2004)
MB1174 TACCGTCGTCCACTCCTTCCTC MH, FISH 22 Raskin et al. (1994b)
MBT857F CGWAGGGAAGCTGTTAAGT qPCR (forward) 19 Yu et al. (2005)
MBT929F AGCACCACAACGCGTGGA qPCR (probe) 18 Yu et al. (2005)
MBT1196R TACCGTCGTCCACTCCTT qPCR (reverse) 18 Yu et al. (2005)
1401R KTTTGGGTGGYGTGACGGGC PCR (reverse) 20 Banning et al. (2005)
Family Methanobacteriaceae MB1175m CCGTCGTCCACTCCTTCCTC RNase H 20 Narihiro et al. (2009b)
MEB859 AGGGAAGCTGTTAAGTCC FISH 18 Boetius et al. (2000)
Genus Methanobrevibacter fMbb1 CTCCGCAATGTGAGAAATCG PCR 20 Skillman et al. (2004)
GMB406 GCCATCCCGTTAAGAATGGC RNase H 20 Narihiro et al. (2009b)
Species M. ruminantium MBR1001 TCAGCCTGGTAATCATACA FISH 19 Yanagita et al. (2000)
Species M. smithii Forward CCGGGTATCTAATCCGGTTC qPCR (forward) 20 Armougom et al. (2009)
Reverse CTCCCAGGGTAGAGGTGAAA qPCR (reverse) 20 Armougom et al. (2009)
Probe CCGTCAGAATCGTTCCAGTCAG qPCR (probe) 22 Armougom et al. (2009)
Genus Methanobacterium fMbium CGTTCGTAGCCGGCYTGA PCR 18 Skillman et al. (2004)
GMBA755 TGGCTTTCGTTACTCACC RNase H 18 Narihiro et al. (2009b)
S‐F‐Mbac‐0398‐S‐a‐20 CCCAAGTGCCACTCTTAACG qPCR (forward) 20 Sawayama et al. (2006)
S‐G‐Mbac‐0526‐A‐a‐33 AAYGGCCACCACTTGAGCTGCCGGTGTTACCGC qPCR (reverse) 33 Sawayama et al. (2006)
S‐G‐Mbac‐0578‐A‐a‐22 AGACTTATCAARCCGGCTACGA qPCR (probe) 22 Sawayama et al. (2006)
Genus Methanosphaera GMSP838 CCGGAACAACTCGAGGCCAT RNase H 20 Narihiro et al. (2009b)
Genus Methanothermobacter Mt392f ACTCTTAACGGGGTGGCTTTT qPCR (forward) 21 Hori et al. (2006)
Mt578r TCATGATAGTATCTCCAGC qPCR (reverse) 19 Hori et al. (2006)
410F CTCTTAACGGGGTGGCTTTT qPCR (forward) 20 Franke‐Whittle et al. (2009a)
667R CCCTGGGAGTACCTCCAGC qPCR (reverse) 19 Franke‐Whittle et al. (2009a)
GMTB541 AAAAGCGGCTACCACTTGAGCT RNase H 22 Narihiro et al. (2009b)
S‐F‐Mbac‐0398‐S‐a‐20 CCCAAGTGCCACTCTTAACG qPCR (forward) 20 Sawayama et al. (2006)
S‐G‐Mthb‐0549‐S‐a‐32 CGGACGCTTTAGGCCCAATAAAAGCGGCTACC qPCR (probe) 32 Sawayama et al. (2006)
S‐G‐Mthb‐0589‐A‐a‐25 GGGATTTCACCAGAGACTTATCAG qPCR (reverse) 25 Sawayama et al. (2006)
Family Methanothermaceae
Genus Methanothermus FMTH1183 TACGGACCTACCGTCGCCCGCA RNase H 22 Narihiro et al. (2009b)
Class Methanococci
Order Methanococcales M(CO/BA)377 CCCCCGTCGCACTTKCGTG MH 19 Ovreås et al. (1997)
Mcc r WASTVGCAACATAGGGCACGG PCR (reverse) 21 Skillman et al. (2004)
MCC495F TAAGGGCTGGGCAAGT qPCR (forward) 16 Yu et al. (2005)
MCC686F TAGCGGTGRAATGYGTTGATCC qPCR (probe) 22 Yu et al. (2005)
MCC832R CACCTAGTYCGCARAGTTTA qPCR (reverse) 20 Yu et al. (2005)
1202R CCAGGRGATTCGGGGCATGC PCR (reverse) 20 Banning et al. (2005)
Family Methanocaldococcaceae S‐F‐Mcc‐1109‐b‐A‐20 GCAACATGGGGCRCGGGTCT MH 20 Nercessian et al. (2004)
MC504 GGCTGCTGGCACCGGACTTGCCCA FISH 24 Crocetti et al. (2006)
FMCMT1044i GTCAACCTGGCCTTCATCCTGC RNase H 22 Narihiro et al. (2009b)
Genus Methanocaldococcus
Genus Methanotorris
Family Methanococcaceae MC1109 GCAACATAGGGCACGGGTCT MH 20 Raskin et al. (1994b)
Genus Methanococcus GMC728 ACCCGTTCCAGACAAGTGCCTT RNase H 22 Narihiro et al. (2009b)
GMC231 ACTACCTAATCGAGCGCAGTCC RNase H 22 Narihiro et al. (2009b)
GMC416 TTGATAAAAGCCCATGCTGTGC RNase H 22 Narihiro et al. (2009b)
Genus Methanothermococcus GMTL416 TAGAAAAGCCTACGCAGTGC RNase H 20 Narihiro et al. (2009b)
Class Methanopyri
Order Methanopyrales
Family Methanopyraceae
Genus Methanopyrus FMCMT1044i GTCAACCTGGCCTTCATCCTGC RNase H 22 Narihiro et al. (2009b)
S‐G‐Mp‐0431‐a‐A‐20 TTACACCCCGGTACAGCCGC MH 20 Nercessian et al. (2004)
GMPK1331 GGTTACTACCGATTCCACCTTC RNase H 22 Narihiro et al. (2009b)
a.

IUPAC Ambiguity Codes: Y = C or T, R = A or G, K = G or T, S = C or G, W = A or T, M = A or C, H = A or C or T, V = A or C or G

b.

Arch f2 probe covers members of the orders Methanomicrobiales, Methanosarcinales and Methanococcales.

c.

SMPL623 probe covers members of the Methanoplanus limicola and M. endosynbiosus.

d.

SMPP1252 probe covers members of the Methanoplanus petrolearius and Methanolacinia.

e.

F6SC393 probe covers members of the genera Methanocorpusculum and Methanocalculus.

f.

EelMS240 probe targets for members of the genera Methanolobus, Methanohalophilus, Methanococcoides and Methanomethylovorans.

g.

R15F probe covers members of the genera Methanomethylovorans and Methanosarcina and Methanolobus psychrophilus.

h.

MS821m probe covers members of the genera Methanimicrococcus and Methanosarcina.

i.

FMCMT1044 probe covers members of the family Methanocaldococcaceae and genus Methanopyrus.

MH, membrane hybridization.

The isolation and characterization of novel methanogens from various ecosystems are ongoing, and the descriptions of such methanogens have been carried out at an encouraging rate. Recently, hydrogenotrophic methanogens, which are novel at high taxonomic levels (Methanocella paludicola and Methanocella arvoryzae), have been isolated, and the novel order Methanocellales was proposed (Sakai et al., 2008; 2010). These methanogens have long been considered as the uncultivable methanogen group (Rice cluster I), and responsible for the major part of methanogenesis in rice paddy soil (Conrad et al., 2006). In addition, novel hydrogenotrophic methanogens associated with previously uncultivated phylogenetic groups of the order Methanomicrobiales (formerly known as E1/E2 or Fen cluster) were isolated from anaerobic bioreactors (Imachi et al., 2008; Yashiro et al., 2009) and wetlands (Cadillo‐Quiroz et al., 2009; Bräuer et al., 2010). Novel strains of the genera Methanofollis (Imachi et al., 2009), Methanolobus (Doerfert et al., 2009; Mochimaru et al., 2009), Methanospirillum (Iino et al., 2010) and Methanobacterium (Krivushin et al., 2010; Shcherbakova et al., 2010) have also been reported recently.

Despite these efforts in cultivating as yet uncultivable methanogens present in environments, there are still a vast number of uncultivable archaeal taxa that may have similar metabolic functions as those of known methanogens. For example, 16S rRNA gene types assigned into the WSA2 (or ArcI) group were frequently retrieved from methanogenic waste/wastewater treatment systems (Sekiguchi and Kamagata, 2004; Chouari et al., 2005). The WSA2 group is considered to be an archaeal taxon at the class level with no cultured representatives (Hugenholtz, 2002). However, Chouari and colleagues have found that WSA2‐related cells can be enriched using formate‐ or hydrogen‐containing culture media, suggesting that they harbour methanogenic activity (Chouari et al., 2005). Another example similar to the Rice Cluster I group is Rice Cluster II (RC‐II). Members of the RC‐II group were also considered to be methanogens, because the 16S rRNA gene clones affiliated with this group were frequently observed in methanogenic enrichment cultures containing ethanol as an electron donor, and because the RC‐II group is a lineage within the phylogenetic radiation of the orders Methanosarcinales and Methanomicrobiales (Lehmann‐Richter et al., 1999). As can be noted from these examples, there is no doubt that the actual biodiversity of methanogens will be much expanded in the future as the number of isolated and described methanogens continues to increase. However, in this review, we mainly focus on the quantitative monitoring tools for previously cultured methanogens.

Oligonucleotide probes/primers for 16S rRNA and its gene

16S rRNA and its gene are the most frequently used biomarkers for the determination of methanogenic populations in environments. 16S rRNA gene‐targeted probes/primers frequently used for identifying methanogens are listed in Table 1. To entirely describe methanogenic populations in ecosystems of interest, 16S rRNA gene‐targeted primer sets for a wide range of methanogen taxa, such as 146f/1324r (Marchesi et al., 2001) and Met83F (Met86F)/Met1340R (Wright and Pimm, 2003), were developed. In addition, a number of oligonucleotide probes/primers for specifically and hierarchically detecting methanogens at different taxonomic levels were designed to resolve different methanogen populations in waste/wastewater treatment anaerobic sludges (Rocheleau et al., 1999; Zheng and Raskin, 2000; Hori et al., 2006; Ariesyady et al., 2007; Franke‐Whittle et al., 2009a; Narihiro et al., 2009a,b), the rumen (Yanagita et al., 2000; Skillman et al., 2004), subseafloor sediments (Boetius et al., 2000; Nercessian et al., 2004), sediments (Falz et al., 1999), the human gut (Armougom et al., 2009) and wetlands (Bräuer et al., 2006; Zhang et al., 2008a,b) (Table 1). Nowadays, almost all of the known culturable methanogens can be detected using these probes/primers at the class, order, family genus and even species levels; at the genus level, it should be noted that the probes/primers targeting for the genera Methermicoccus, Methanomethylovorans, Methanocaldococcus and Methanotorris are lacking.

Oligonucleotide probes/primers for mcrA gene

The 16S rRNA gene has been best used for the identification of methanogens in environments. However, because archaeal 16S rRNA genes other than those of methanogens can also often be detected using PCR primer sets for a wide range of methanogen taxa, it has limitation in exclusively describing the population structure of methanogens. Therefore, there is a need to detect methanogens on the basis of functional genes that are found to be unique in methanogenesis. Such a functional gene frequently used is mcrA. Methyl coenzyme M reductase (mcr) is the terminal enzyme involved in methanogenesis, which reduces the methyl group bond of methyl coenzyme M with the release of methane (Friedrich, 2005). Because the α‐subunit of mcr (mcrA) and its isoenzyme gene (mrtA) are highly conserved among methanogens, and that these genes are almost exclusively found in methanogens, mcrA/mrtA‐based detection of methanogens has been used. The phylogeny of methanogens determined using mcrA/mrtA (or translated amino acid) sequences is in good accordance with those determined using 16S rRNA gene sequences (Friedrich, 2005). Previously reported, frequently used probes/primers for mcrA/mrtA are categorized into three primer sets, namely, MCR (Springer et al., 1995), ME (Hales et al., 1996) and ML (Luton et al., 2002) (Table 2). The targeted regions of the forward primers of these sets are considerably different, whereas those of the reverse primers are almost the same. The MCR primer set was originally designed to determine the phylogeny of the family Methanosarcinaceae (Springer et al., 1995). The ME primer set was designed to describe methanogenic populations in wetlands (Hales et al., 1996), for which the difficulty in amplifying mcrA/mrtA relevant to Methanosarcinaceae and Methanobacteriaceae was pointed out later (Lueders et al., 2001; Juottonen et al., 2006). The ML primer set was developed on the basis of the mcrA sequences obtained from five orders, comprising Methanosarcinales, Methanomicrobiales, Methanobacteriales, Methanococcales and Methanopyrales (Luton et al., 2002). Four other primer sets and probes for specific taxonomic groups have also been developed recently (Table 2).

Table 2.

Oligonucleotide PCR primers and probes targeting the mcrA gene.

Probe/primer name Name Direction/Application Probe sequence (5′–3′) Probe length (mer) Reference Specificity
PCR primer
 Set 1 MCRf Forward TAYGAYCARATHTGGYT 17 Springer et al. (1995) Most methanogens
MCRr Reverse ACRTTCATNGCRTARTT 17
 Set 2 ME1 Forward GCMATGCARATHGGWATGTC 20 Hales et al. (1996) Most methanogens
ME2 Reverse TCATKGCRTAGTTDGGRTAGT 21
 Set 3 MLf Forward GGTGGTGTMGGATTCACACARTAYGCWACAGC 32 Luton et al. (2002) Most methanogens
MLr Reverse TTCATTGCRTAGTTWGGRTAGTT 23
 Set 4 ME1 Forward GCMATGCARATHGGWATGTC 20 Hales et al. (1996) Most methanogens
ME2b Reverse TCCTGSAGGTCGWARCCGAAGAA 23 Shigematsu et al. (2004)
 Set 5 MrtA_for Forward AAACAATCAACCACGCACTC 20 Scanlan et al. (2008) Methanosphaera stadtmanae
MrtA_rev Reverse GTGAGCCCAATCGAAGGA 18
 Set 6 METH‐f Forward RTRYTMTWYGACCARATMTG 20 Colwell et al. (2008) Most methanogens
METH‐r Reverse YTGDGAWCCWCCRAAGTG 18
 Set 7 mlas Forward GGTGGTGTMGGDTTCACMCARTA 24 Steinberg and Regan (2008) Most methanogens
mcrA‐rev Reverse CGTTCATBGCGTAGTTVGGRTAGT 24
 Set 8 ME3MF Forward ATGTCNGGTGGHGTMGGSTTYAC 23 Nunoura et al. (2008) Most methanogens
ME3MF‐e Forward ATGAGCGGTGGTGTCGGTTTCAC 23
ME2r' Reverse TCATBGCRTAGTTDGGRTAGT 21
Probe
ME3 Clone screening GGTGGHGTMGGWTTCACACA 20 Hales et al. (1996) Most of methanogens
SAE716TAQ TaqMan probe AGGCCTTCCCCACTCTGCTTGAGGAT 26 Shigematsu et al. (2004) Genus Methanosaeta
SAR716TAQ TaqMan probe AGAAATTCCCAACAGCCCTTGAAGAC 26 Shigematsu et al. (2004) Genus Methanosarcina
MCU716TAQ TaqMan probe AGCAGTACCCGACCATGATGGAGGAC 26 Shigematsu et al. (2004) Genus Methanoculleus
mbac‐mcrA TaqMan probe ARGCACCKAACAMCATGGACACWGT 25 Steinberg and Regan (2009) Family Methanobacteriaceae
mrtA TaqMan probe CCAACTCYCTCTCMATCAGRAGCG 24 Steinberg and Regan (2009) Family Methanobacteriaceae
mcp TaqMan probe AGCCGAAGAAACCAAGTCTGGACC 24 Steinberg and Regan (2009) Family Methanocorpusculaceae
msp TaqMan probe TGGTWCMACCAACTCACTCTCTGTC 25 Steinberg and Regan (2009) Family Methanospirillaceae
Fen TaqMan probe AAVCACGGYGGYMTCGGMAAG 21 Steinberg and Regan (2009) Genus Methanoregula
msa TaqMan probe CCTTGGCRAATCCKCCGWACTTG 23 Steinberg and Regan (2009) Family Methanosaetaceae
msar TaqMan probe TCTCTCWGGCTGGTAYCTCTCCATGTAC 28 Steinberg and Regan (2009) Genus Methanosarcina
McvME0 FISH GGAAAAATTCGAAGAAGATC 20 Kubota et al. (2006) Methanococcus vannielii
McvME3r FISH TGTGTGAAACCTACGCCACC 20 Kubota et al. (2006) Methanococcus vannielii
McvME1r FISH GACATTCCAATCTGCATTGC 20 Kubota et al. (2006) Methanococcus vannielii

The probes/primers listed here.

Assessing the biodiversity of methanogens in complex communities by PCR detection and cloning of methanogen genes

Some of the noted primers for 16S rRNA and methyl coenzyme M reductase genes have often been used for the detection and identification by PCR to explore the diversity of methanogens in environmental samples (Table 3). For example, the 146f/1324r primer set for most of all the known methanogens was designed for the 16S rRNA gene clone analysis of deep sediment gas hydrate deposit, and the results showed that gene clones (phylotypes) affiliated with Methanosarcina and Methanobrevibacter predominated in the sediments (Marchesi et al., 2001). Similarly, some of these primers shown in Table 1 have been used for PCR to profile methanogen populations by denaturing gradient gel electrophoresis (DGGE) (e.g. (Casamayor et al., 2001; 2002; Yu et al., 2005; 2006; 2008). As examples, Wright and Pimm (2003) developed PCR and sequencing primers for the 16S rRNA gene of methanogens, and used them for the ribotyping of members of the classes ‘Methanomicrobia’ and Methanobacteria. The detection of methanogens by PCR in lamb rumen samples was performed using methanogen‐specific primers targeting different taxonomic levels (Skillman et al., 2004). Banning and colleagues (2005) designed novel reverse primers to provide specific amplification of the 16S rRNA genes of ‘Methanomicrobia’ (Methanomicrobiales and Methanosarcinales), Methanobacteriales and Methanococcales, and successfully used them for the identification of methanogenic population structures in lake sediments.

Table 3.

Examples of oligonucleotide primer sets for PCR‐based analyses for methanogens.

Type of sample Application Target gene Target group Probe set (forward/reverse/probe)a Reference
Anaerobic process qPCR 16S rRNA Methanomicrobiales MMB282F/MMB832R/MMB749F Yu et al. (2005)
Methanosarcinales MSL812F/MSL1159R/MSL860F
Methanobacteriales MBT857F/MBT1196R/MBT929F
Methanococcales MCC495F/MCC832R/MCC686F
Methanosarcinaceae Msc380F/Msc828R/Msc492F
Methanosaeta Mst702F/Mst862R/Mst753F
qPCR mcrA Methanocorpusculaceae mlas/mcrA‐rev/mcp Steinberg and Regan (2009)
Methanospirillaceae mlas/mcrA‐rev/msp
Methanosaetaceae mlas/mcrA‐rev/msa
Methanobacteriaceae mlas/mcrA‐rev/mbac‐mcrA
Methanobacteriaceae mlas/mcrA‐rev/mrtA
Methanoregula mlas/mcrA‐rev/Fen
Methanosarcina mlas/mcrA‐rev/msar
qPCR 16S rRNA Methanoculleus 298F/586R Franke‐Whittle et al. (2009a)
Methanosarcina 240F/589R
Methanothermobacter 410F/667R
qPCR 16S rRNA Methanoculleus thermophilus Mc412f/Mc578r Hori et al. (2006)
Methanosaeta thermophila Ms413f/Ms578r
Methanothermobacter Mt392f/Mt578r
qPCR 16S rRNA Methanosaeta MS1b/SAE835R/SAE761TAQ Shigematsu et al. (2003)
Methanosarcina MB1b/SAR835R/SAR761TAQ
Methanoculleus AR934F/MG1200b/MCU1023TAQ
qPCR mcrA Methanosaeta ME1/ME2b/SAE716TAQ Shigematsu et al. (2004)
Methanosarcina ME1/ME2b/SAR716TAQ
Methanoculleus ME1/ME2b/MCU716TAQ
qPCR 16S rRNA Methanosaeta S‐F‐Msaet‐0387‐S‐a‐21/S‐F‐Msaet‐0540‐A‐a‐31/S‐F‐Msaet‐0573‐A‐a‐17 Sawayama et al. (2004)
qPCR 16S rRNA Methanosarcina S‐G‐Msar‐0450‐S‐a‐19/S‐P‐Msar‐0540‐A‐a‐31/S‐G‐Msar‐0589‐S‐a‐20 Sawayama et al. (2006)
Methanobacterium S‐F‐Mbac‐0398‐S‐a‐20/S‐G‐Mbac‐0526‐A‐a‐33/S‐G‐Mbac‐0578‐A‐a‐22
Methanothermobacter S‐F‐Mbac‐0398‐S‐a‐20/S‐G‐Mthb‐0549‐S‐a‐32/S‐G‐Mthb‐0589‐A‐a‐25
qPCR 16S rRNA Methanospirillum AR934F/MG1200b/MSP1025TAQ Tang et al. (2005)
qPCR 16S rRNA Methanolinea NOBI109f/NOBI633 Imachi et al. (2008)
PCR‐cloning 16S rRNA Most methanogens 109f/UNIV1492rb Narihiro et al. (2009a)
PCR‐cloning 16S rRNA Most methanogens 25f/1391r Ariesyady et al. (2007)
25f/UNIV1492rb
109f/UNIV1492rb
Anaerobic process, wetland PCR‐cloning mcrA Most methanogens mlas/mcrA‐rev Steinberg and Regan (2008)
Wetland PCR‐cloning mcrA Most methanogens ME1/ME2 Hales et al. (1996)
qPCR 16S rRNA Methanolobus psychrophilus R15F/R15R Zhang et al. (2008a)
Rumen qPCR, DGGE 16S rRNA Most methanogens Met630F/Met803R Hook et al. (2009)
PCR, DGGE 16S rRNA Most methanogens A357f/A693r Yu et al. (2008)
A24f/A329r
A24f/A348r
PCR‐typing 16S rRNA Most methanogens Arch f2/Arch r1386 Skillman et al. (2004)
Methanosarcinales Arch f2/MSr r859
Methanobacteriales Mbac f331/Arch r1386
Methanobacterium fMbium/Arch r1386
Methanococcales Arch f2/Mcc r
Methanobrevibacter fMbb1/Arch r1386
qPCR 16S rRNA Methanobrevibacter smithii forward/reverse/probe Armougom et al. (2009)
Gastrointestinal tract PCR‐cloning mcrA Most methanogens MrtA_for/MrtA_rev Scanlan et al. (2008)
Deep sea sediments PCR‐cloning 16S rRNA Most methanogens 146f/1324r Marchesi et al. (2001)
qPCR mcrA Most methanogens METH‐f/METH‐r Colwell et al. (2008)
qPCR mcrA Most methanogens ME3MF and ME3MF‐e/ME2r' Nunoura et al. (2008)
Lake sediment PCR‐cloning 16S rRNA Methanomicrobia 355Fc/1068R Banning et al. (2005)
Methanobacteriales 109f/1401R
Methanococcales 344Fd/1202R
Sulfurous lake PCR, DGGE 16S rRNA Most methanogens ARC344f/ARC915 Casamayor et al. (2001)
Landfill PCR‐cloning mcrA Most methanogens MLf/MLr Luton et al. (2002)
Ciliate endosymbiont PCR, DGGE 16S rRNA Most methanogens A1f/A1100r Embley et al. (1992)
Rice paddy soil PCR, DGGE 16S rRNA Most methanogens 109f/ARC915 Grosskopf et al. (1998)
Pure cultures PCR‐ribotyping 16S rRNA Most methanogens Met83F (or Met86F)/Met1340R Wright and Pimm (2003)
PCR‐cloning mcrA Most methanogens MCRf/MCRr Springer et al. (1995)
a.

The primer sequences were shown in Tables 1 and 2.

b.

UNIV1492r reverse primer was originally referred from Lane (1991) as an universal primer.

c.

355F forward primer was originally referred as M(SA/MI)355 probe developed by Ovreås et al. (1997) as shown in Table 1.

d.

344F forward primer was originally referred as ARC344 probe developed by Raskin and colleagues (1994b) as shown in Table 1.

Massive parallel sequencing of PCR‐amplified 16S rRNA genes using next generation sequencers (such as the FLX pyrosequencers) allows us to obtain a huge number of community sequence tags (for example c. 10 000–100 000 16S pyrotags for each sample), which is more than any Sanger‐based cloning study to date, and have been used for characterizing archaeal populations (including methanogens) in hydrothermal chimneys (Brazelton et al., 2010a,b). The methodological advancements of 16S rRNA gene pyrosequencing include higher resolution (more sequences) for gene‐based community structure analysis, analysis of multiple related samples and use of metadata (Tringe and Hugenholtz, 2008). Because of these advancements, as well as recent development of analytical tools for massive sequence data such as QIIME (Caporaso et al., 2010), the method may be further used for characterizing diversity of methanogens in ecosystems.

Similarly, the primers for methyl coenzyme M reductase genes have often been used for PCR detection and identification to exclusively explore the diversity of methanogens in samples. For example, the MCR set was used to elucidate the diversity of methanogens in various environments with PCR‐based cloning (Kemnitz et al., 2004; Dhillon et al., 2005; Alain et al., 2006) and T‐RFLP analyses (Ramakrishnan et al., 2001; Kemnitz et al., 2004). Such cloning analyses were also conducted using the ME (Hales et al., 1996; Nercessian et al., 1999; Galand et al., 2002; 2005; Tatsuoka et al., 2004) and ML primer sets (Luton et al., 2002; Castro et al., 2004; Juottonen et al., 2005; Nercessian et al., 2005; Ufnar et al., 2007; Smith et al., 2008). Comparative studies using these three primer sets have indicated that the ML primer set is more efficient for retrieving phylogenetically diverse methanogens in the wetland than others (Juottonen et al., 2006; Jerman et al., 2009). Owing to this advantage, the ML set has been used extensively to determine the diversity of methanogens in various anaerobic ecosystems. In addition, it has been noted that these mcrA‐targeted primer sets (especially ME‐related primer set) were also used for the quantitative detection of anaerobic methanotrophic archaea (ANME) in methane seep sediments (Inagaki et al., 2004; Nunoura et al., 2006; 2008). This is due to the fact that anaerobic methane oxidation represented by the ANME group is considered to proceed with mcr‐type enzymes (Thauer and Shima, 2008). Detailed information about the mcrA‐based qPCR for ANMEs is described below.

Polymerase chain reaction‐based molecular techniques, such as PCR‐cloning, pyrosequencing, DGGE and T‐RFLP are adequate to gain entire community composition and diversity of methanogens in ecosystems. Based on the frequency of retrieval of phylotypes in gene library (or relative intensity of DGGE or T‐RF bands in electropherogram), relative abundance of phylotypes of interest can be inferred. However, it should be noted that entire microbial community structure analysis based on bulk cell lysis, DNA extraction, PCR and cloning are often suspect because of several biases involved in each of the steps (Dahllof, 2002). Therefore, one should be careful to discuss on the abundance of phylotypes in samples based solely on the data obtained by these methods. More reliable methods to carry out quantitative detection of different groups of methanogens in samples would be to use the following quantitative molecular techniques.

Identification and quantification of methanogens in complex communities by membrane hybridization method

Quantitative membrane hybridization of labelled DNA probes to community rRNAs has been applied to various environmental rRNAs for the quantitative detection of specific groups of microbes present in complex communities (Stahl et al., 1988; Raskin et al., 1994a). RNA‐dependent community analysis is known to indicate the in situ activity of individual members in ecosystems, because of the reasons that RNA synthesis is known to reflect the in situ growth rates of organisms (Poulsen et al., 1993; Amann et al., 1995), and that the turnover of RNA is thought to be much higher than that of DNA. Therefore, rRNA‐dependent molecular techniques like the present one provide precise information about the dynamic nature of individual microbes in systems. In 1994, Raskin and colleagues carried out the first leading studies on the development of eight oligonucleotide probes for the quantitative detection of methanogens in anaerobic wastewater treatment sludges (Stahl and Amann, 1991; Raskin et al., 1994a,b). In these studies, they established the group‐specific oligonucleotide probes targeting Methanomicrobiales (probes MG1200 and MSMX860), Methanobacteriaceae (probes MB310 and MB1174) and Methanococcales (probe MC1109). Because of the importance of methane production from acetate in anaerobic bioreactors, specific probes for aceticlastic methanogens, such as the members of Methanosarcinaceae (probes MS1414 and MS821) and Methanosaeta (probe MX825), were also developed.

These probes have been successfully applied to the quantification of methanogens in laboratory‐ and full‐scale anaerobic bioreactors based on rRNA (Raskin et al., 1995; Griffin et al., 1998; Liu et al., 2002; McMahon et al., 2004; Zheng et al., 2006). Although membrane hybridization enables the sensitive quantification of individual species of rRNA molecules, this method requires several laborious experimental steps, often radioactively labelled DNA probes, and reference rRNA samples as external standards for each experiment. Thus, the method itself may be replaced by similar but much rapid and simpler methods, such as real‐time RT‐PCR and RNase H methods. However, the probes used for membrane hybridization experiments may be also used as probes/primers in other experiments shown below.

FISH for methanogens

Whole‐cell FISH based on 16S rRNA is now commonly used to detect specific groups of microbes and to quantify populations of interest in environments by direct counting under a microscope (Amann et al., 1995). In addition, FISH is used for visualizing the spatial distribution of the population of interest in biofilms, such as those of methanogens in sludge granules in methanogenic wastewater treatment systems (Sekiguchi et al., 1999). Basically, the probes developed for membrane hybridization of methanogen 16S rRNAs or reverse primers for PCR amplification of methanogen 16S rRNA genes can directly be used as oligonucleotide probes for in situ hybridization studies, the probes previously designed by Raskin and colleagues (Raskin, et al., 1994b) have frequently be used for the purpose of FISH studies as well. These probes have been used for the quantitative detection of methanogens using the FISH technique in various anaerobic ecosystems, such as peat bog (e.g. Horn et al., 2003), aquifer (e.g. Kleikemper et al., 2005), landfills (e.g. Laloui‐Carpentier et al., 2006) and anaerobic wastewater treatment processes (e.g. Sekiguchi et al., 1999; Plumb et al., 2001; Boonapatcharoen et al., 2007; Chen et al., 2009). Recently, the improvement of the specificity and sensitivity of the probes designed by Raskin and colleagues (1994b) has been reported. Crocetti and colleagues (2006) refined the experimental conditions of such probes for FISH analysis to accurately and sensitively detect methanogens.

In addition to the quantification, the probes (Table 1) have also been used for investigating the localization of methanogens in biofilms (sludge granules) [e.g. (Rocheleau et al., 1999; Sekiguchi et al., 1999; Plumb et al., 2001; Zheng et al., 2006; Vavilin et al., 2008; Chen et al., 2009)]. In anaerobic sludge granules, hydrogenotrophic methanogens are often juxtaposed with syntrophic substrate‐degrading bacteria, such as syntrophic propionate‐oxidizing bacteria such as members of the genera Syntrophobacter and Pelotomaculum; such close proximity between syntrophic bacteria and methanogens has been observed by FISH with confocal laser scanning microscopy (Harmsen et al., 1995; 1996; Sekiguchi et al., 1999; Imachi et al., 2000). Anaerobic ciliates often posses endosymbiotic methanogens within their cells, and the distribution of such methanogens in eukaryotic cells has been observed by the FISH method [e.g. (Embley et al., 1992; Shinzato et al., 2007)].

Although FISH is a powerful method for visualizing the cells of interest, there are some drawbacks in detecting cells; one of such problems is concerned with the penetration of oligonucleotide probes into the cells (Amann et al., 1995). For methanogens, FISH staining is often difficult for some Methanobacterium and Methanobrevibacter cells, for which oligonucleotide probes do not penetrate into their cells (Sekiguchi et al., 1999; Yanagita et al., 2000; Nakamura et al., 2006). To solve this problem, fixed cells were subjected to freeze‐thaw cycles before hybridization, resulting in the improvement of probe penetration (Sekiguchi et al., 1999). Another way to solve this problem is the use of recombinant pseudomurein endoisopeptidase, which increases the permeability of oligonucleotide probes into cells, and allows a better visualization of methanogens in anaerobic granular sludge and the endosymbiotic methanogens in the anaerobic ciliate Trimyema compressum (Nakamura et al., 2006). An improved protocol of catalysed reporter deposition‐FISH for methanogens with recombinant pseudomurein endoisopeptidase has also been reported, which can increase fluorescence signal intensity in FISH for detecting cells with a low rRNA content (Kubota et al., 2008).

Recently, mcrA‐based in situ detection of methanogens has been performed using the two‐pass tyramide signal amplification‐FISH approach combined with locked nucleic acids (Kubota et al., 2006; Kawakami et al., 2010). These attempts were, at this point, only partially successful in detecting methanogen cells, because mcrA is generally present as a single copy gene on their chromosome, which results in a low sensitivity of detection.

qPCR

Quantitative PCR of 16S rRNA gene and mcrA has also been used to quantify the abundance of methanogens in recent years. Examples of qPCR primer and probe sets for different taxa of methanogens are listed in Table 3. For example, the primers Met630F/Met803R were developed for the SYBR green‐based real‐time qPCR for almost all the known methanogens in the rumen of the dairy cow (Hook et al., 2009). Yu and colleagues (2005) designed TaqMan‐based qPCR probes/primer sets (six sets in total) for each of the orders Methanomicrobiales, Methanosarcinales, Methanobacteriales and Methanococcales, as well as the families Methanosaetaceae and Methanosarcinaceae. They applied a part of these sets to quantifying aceticlastic methanogens in methanogenic sludges for treating sewage sludges, cheese whey wastewater and synthetic wastewater, and revealed that the population of aceticlastic methanogens is affected by the acetate concentration in the wastewaters (Yu et al., 2006). qPCR detection using specific primers for particular groups of methanogens of interest, such as Methanoculleus (Shigematsu et al., 2003; Hori et al., 2006; Franke‐Whittle et al., 2009a), Methanolinea (Imachi et al., 2008), Methanospirillum (Tang et al., 2005), Methanosaeta (Shigematsu et al., 2003; Sawayama et al., 2004; Hori et al., 2006), Methanosarcina (Shigematsu et al., 2003; Sawayama et al., 2006; Franke‐Whittle et al., 2009a), Methanolobus (Zhang et al., 2008a,b), Methanobrevibacter (Armougom et al., 2009), Methanobacterium (Sawayama et al., 2006) and Methanothermobacter (Hori et al., 2006; Sawayama et al., 2006; Franke‐Whittle et al., 2009a) have also been reported to date (Table 3).

For the qPCR detection of mcrA, the ME primer set was used for the quantification of methanogenic and methanotrophic populations in methane seep sediments (Inagaki et al., 2004; Nunoura et al., 2006). Afterwards, Nunoura and colleagues (2008) slightly modified the ME primer series, and showed that the mixture of the ME3MF and ME3MF‐e forward primers and the ME2' reverse primer is most suitable for the qPCR detection of the methanogens and ANMEs in the environments. The results showed that a significant amount of methanogens and ANMEs was found in anaerobically digested sludge and methane seep sediments. The ML primer set was also used for the quantitation of methanogenic archaeal populations in the rumen (Denman et al., 2007) and human subgingival plaque (Vianna et al., 2008). Moreover, Steinberg and Regan (2008; 2009) developed the mlas/mcrA‐rev primer set, which is a derivative of the ML primer set, for the clone library construction and qPCR analyses of methanogens in oligotrophic fen and anaerobic digester sludge. In addition, the genus‐specific TaqMan probes for the mcrA‐based quantitative detection of the Methanosaeta, Methanosarcina and Methanoculleus resident in acetate‐fed chemostats, and the results showed that dilution rate is a key factor in the acetate bioconversion pathway (Shigematsu et al., 2004).

Quantitative PCR method provides sensitive, quantitative data of gene of interest with a sufficiently high dynamic range of quantification (Zhang and Fang, 2006). Therefore, in addition to the use of digital PCR (Ottesen et al., 2006), qPCR may be further used for quantitative monitoring of methanogen taxa of interests in complex microbial communities. However, it should be noted that the method is PCR‐based and hence their data can be suspect because of biases involved in DNA extraction and primer/probe mismatches.

Assessing methanogen population by RNase H method

Although the above‐mentioned quantitative methods such as membrane hybridization and qPCR are becoming general means to determine the abundance of the population of interest in a complex microbial community, there is a need to develop more simple and rapid techniques that meet the needs for real‐time monitoring of the population of interest in a complex community. Recently, a simple and rapid quantification method, namely, the RNase H method, has been developed (Uyeno et al., 2004). This method is based on the sequence‐specific cleavage of 16S rRNA with ribonuclease H (RNase H) and oligonucleotide (scissor) probes. RNAs from a complex community were first mixed with an oligonucleotide and subsequently digested with RNase H. Because RNase H specifically degrades the RNA strand of RNA : DNA hybrid heteroduplexes, the targeted rRNAs are cleaved at the hybridization site in a sequence‐dependent manner and are consequently cut into two fragments. In contrast, non‐targeted rRNAs remain intact under the same conditions. For the detection of cleaved rRNAs, the resulting RNA fragment patterns can be resolved by gel electrophoresis using RNA‐staining dyes. The relative abundance of the targeted species of 16S rRNA fragments in total 16S rRNA can also be quantified by determining the signal intensity of individual 16S rRNA bands in an electropherogram (without the use of external standards). Because this method does not require an external RNA standard for each experiment, as is required in membrane hybridization, and because the present method is relatively easy to perform within a short time (i.e. within 2–3 h), this technique may provide direct, rapid and easy means of the quantitative detection of particular groups of anaerobes based on their rRNA, such as those of methanogens as well.

This method has been successfully applied to the quantification of active methanogens in anaerobic biological treatment processes (Uyeno et al., 2004; Sekiguchi et al., 2005; Narihiro et al., 2009b). In general, oligonucleotide probes used in FISH and membrane hybridization methods can directly be used as scissor probes in the RNase H method. Recently, a total of 40 probes, including newly designed and previously reported probes listed in Table 1, have been optimized for the specific quantification of methanogens at different taxonomic levels for use in the RNase H method and have been applied to quantitative and comprehensive detection of methanogens in various types of anaerobic biosystems (Narihiro et al., 2009b). As a result, methanogen populations were identified at different taxonomic levels and were influenced by the process temperature and wastewater compositions. Because of the reasons that this method is based on rRNA and that the RNA (rRNA) level is often dependent on the in situ activity of individual cells as described above, this method may be used for real‐time monitoring of active methanogens and other important bacteria in engineered ecosystems such as waste/wastewater treatment systems to better control such bioreactors.

Stable isotope probing (SIP)‐based detection of active methanogen populations in environments

To identify metabolically active populations in environments, SIP of DNA (Radajewski et al., 2000) and RNA (Manefield et al., 2002) has been used in recent years. In principle, SIP technology is based on the incorporation of 13C‐labelled substrates into the nucleic acids. The separation of isotopically labelled (active) fractions from unlabeled (inactive) fractions is generally performed with density gradient centrifugation. The substrate‐assimilated microorganisms in the labelled fractions are identified by a set of PCR‐based molecular techniques such as gene cloning, DGGE and other methods. Therefore, for the purpose of identifying active methanogens that are responsible for particular metabolisms in environments, the probes/primers listed in Tables 1 and 2 can be used.

As examples, active methanogen populations involved in the syntrophic propionate oxidation in anoxic soil were analysed on the basis of rRNA‐SIP, and it was found that the members of the genera Methanobacterium, Methanosarcina and Methanocella play a key role in scavenging hydrogen/formate/acetate in syntrophic association with propionate‐oxidizing bacteria (Lueders et al., 2004). Conrad and coworkers have studied the detection of active methanogen populations using DNA‐SIP combined with 13C‐labelled CO2, and the results of T‐RFLP profiling and phylogenetic analysis for clonal 16S rRNA gene fragments suggest that members of the RC‐I group (Methanocellales) serve as important methanogens in rice paddy fields (Lu and Conrad, 2005; Lu et al., 2005). The active methanogenic populations in enrichment culture of municipal solid waste digester residues spiked with 13C‐labelled substrates (such as cellulose, glucose and sodium acetate) were determined by DNA‐SIP followed by cloning analysis (Li et al., 2009).

Other methods and future perspectives

DNA microarray platform, like PhyloChip, is becoming an important tool for parallel detection of different community members of microbes in ecosystems. For high throughput and comprehensive detection of methanogens in parallel, ANAEROCHIP (Franke‐Whittle et al., 2009b) and GeoChip (Wang et al., 2009) have been developed recently. The primers/probes summarized in this review may be integrated into such a platform for parallel and hierarchical detection of methanogens. These primer/probes for methanogens can also be used in novel PCR‐based techniques, such as the hierarchical oligonucleotide primer extension method (Wu and Liu, 2007), which has recently been developed for quantitative, multiplex detection of targeted microbial genes among PCR‐amplified genes. SIP technology has been noted as an important pretreatment step for functional microbial community analyses, such as Raman microscopy‐FISH (Huang et al., 2007; 2009) and metagenomic approaches (Kalyuzhnaya et al., 2008; Sul et al., 2009). Moreover, recent advances in analytical chemistry, such as isotope ratio mass spectrometry (Penning et al., 2006; Vavilin et al., 2008) and secondary ion mass spectrometry (Orphan et al., 2001), hold great promise for the highly sensitive determination of targeted microbes. Thus, in addition to describing the diversity of methanogens in particular environments of interest on the basis of DNA and RNA, such function‐related analyses of methanogens may become important in the fields of environmental, determinative and applied microbiology.

As described in this minireview, a vast number of probe/primers have been developed for describing and quantifying methanogen populations, covering most parts of the known culturable methanogens described so far. A variety of molecular methods have also been developed that are used in combination with the probe/primers. Because these molecular methods have their own advancements and drawbacks, researchers need to select appropriate combinations of methods and probe/primers depending on what the researchers need to know. For details, recent reviews may be helpful for the selection of molecular techniques to be used (Talbot et al., 2008; Tabatabaei et al., 2010). In molecular ecology, multiple approaches are best to gain a complete picture of methanogen populations in environments. Therefore, the use of appropriate (multiple) molecular techniques in combinations with other non‐molecular based methods like membrane lipid, autofluorescence, activity measurement and immunoenzymatic profiling should be considered. It should also be noted that there are still a number of uncultivated methanogens in various environments, and that they should be further isolated and characterized in detail. Monitoring tools for such uncultured methanogens remain to be developed to further increase in the coverage of methanogens present in environments.

Acknowledgments

This work was supported by the Environment Research and Technology Development Fund (S2‐03) and the Global Environment Research Fund (RF‐076) of the Ministry of the Environment, Japan.

References

  1. Alain K., Holler T., Musat F., Elvert M., Treude T., Kruger M. Microbiological investigation of methane‐ and hydrocarbon‐discharging mud volcanoes in the Carpathian Mountains, Romania. Environ Microbiol. 2006;8:574–590. doi: 10.1111/j.1462-2920.2005.00922.x. [DOI] [PubMed] [Google Scholar]
  2. Amann R.I., Ludwig W., Schleifer K.H. Phylogenetic identification and in‐situ detection of individual microbial‐cells without cultivation. Microbiol Rev. 1995;59:143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ariesyady H.D., Ito T., Okabe S. Functional bacterial and archaeal community structures of major trophic groups in a full‐scale anaerobic sludge digester. Water Res. 2007;41:1554–1568. doi: 10.1016/j.watres.2006.12.036. [DOI] [PubMed] [Google Scholar]
  4. Armougom F., Henry M., Vialettes B., Raccah D., Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS ONE. 2009;4:e7125. doi: 10.1371/journal.pone.0007125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Banning N., Brock F., Fry J.C., Parkes R.J., Hornibrook E.R.C., Weightman A.J. Investigation of the methanogen population structure and activity in a brackish lake sediment. Environ Microbiol. 2005;7:947–960. doi: 10.1111/j.1462-2920.2004.00766.x. [DOI] [PubMed] [Google Scholar]
  6. Barns S.M., Fundyga R.E., Jeffries M.W., Pace N.R. Remarkable archaeal diversity detected in a Yellowstone National Park hot‐spring environment. Proc Natl Acad Sci USA. 1994;91:1609–1613. doi: 10.1073/pnas.91.5.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boetius A., Ravenschlag K., Schubert C.J., Rickert D., Widdel F., Gieseke A. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 2000;407:623–626. doi: 10.1038/35036572. et al. [DOI] [PubMed] [Google Scholar]
  8. Boonapatcharoen N., Meepian K., Chaiprasert P., Techkarnjanaruk S. Molecular monitoring of microbial population dynamics during operational periods of anaerobic hybrid reactor treating cassava starch wastewater. Microb Ecol. 2007;54:21–30. doi: 10.1007/s00248-006-9161-6. [DOI] [PubMed] [Google Scholar]
  9. Bräuer S.L., Cadillo‐Quiroz H., Yashiro E., Yavitt J.B., Zinder S.H. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature. 2006;442:192–194. doi: 10.1038/nature04810. [DOI] [PubMed] [Google Scholar]
  10. Bräuer S.L., Cadillo‐Quiroz H., Ward R.J., Yavitt J., Zinder S. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol. 2010 doi: 10.1099/ijs.0.021782-0. [DOI] [PubMed] [Google Scholar]
  11. Brazelton W.J., Ludwig K.A., Sogin M.L., Andreishcheva E.N., Kelley D.S., Shen C.C. Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000‐year time scales in hydrothermal chimneys. Proc Natl Acad Sci USA. 2010a;107:1612–1617. doi: 10.1073/pnas.0905369107. et al. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brazelton W.J., Sogin M.L., Baross J.A. Multiple scales of diversification within natural populations of archaea in hydrothermal chimney biofilms. Environ Microbiol Rep. 2010b;2:236–242. doi: 10.1111/j.1758-2229.2009.00097.x. [DOI] [PubMed] [Google Scholar]
  13. Cadillo‐Quiroz H., Yavitt J.B., Zinder S.H. Methanosphaerula palustris gen. nov., sp nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int J Syst Evol Microbiol. 2009;59:928–935. doi: 10.1099/ijs.0.006890-0. [DOI] [PubMed] [Google Scholar]
  14. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K. QIIME allows analysis of high‐throughput community sequencing data. Nat Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. et al. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Casamayor E.O., Muyzer G., Pedros‐Alio C. Composition and temporal dynamics of planktonic archaeal assemblages from anaerobic sulfurous environments studied by 16S rDNA denaturing gradient gel electrophoresis and sequencing. Aquat Microb Ecol. 2001;25:237–246. [Google Scholar]
  16. Casamayor E.O., Massana R., Benlloch S., Ovreas L., Diez B., Goddard V.J. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol. 2002;4:338–348. doi: 10.1046/j.1462-2920.2002.00297.x. et al. [DOI] [PubMed] [Google Scholar]
  17. Castro H., Ogram A., Reddy K.R. Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida Everglades. Appl Environ Microbiol. 2004;70:6559–6568. doi: 10.1128/AEM.70.11.6559-6568.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Chen C.L., Wu J.H., Tseng I.C., Liang T.M., Liu W.T. Characterization of active microbes in a full‐scale anaerobic fluidized bed reactor treating phenolic wastewater. Microbes Environ. 2009;24:144–153. doi: 10.1264/jsme2.me09109. [DOI] [PubMed] [Google Scholar]
  19. Chouari R., Le Paslier D., Daegelen P., Ginestet P., Weissenbach J., Sghir A. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol. 2005;7:1104–1115. doi: 10.1111/j.1462-2920.2005.00795.x. [DOI] [PubMed] [Google Scholar]
  20. Colwell F.S., Boyd S., Delwiche M.E., Reed D.W., Phelps T.J., Newby D.T. Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin. Appl Environ Microbiol. 2008;74:3444–3452. doi: 10.1128/AEM.02114-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Conrad R., Erkel C., Liesack W. Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr Opin Biotechnol. 2006;17:262–267. doi: 10.1016/j.copbio.2006.04.002. [DOI] [PubMed] [Google Scholar]
  22. Crocetti G., Murto M., Bjornsson L. An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH) J Microbiol Methods. 2006;65:194–201. doi: 10.1016/j.mimet.2005.07.007. [DOI] [PubMed] [Google Scholar]
  23. Dahllof I. Molecular community analysis of microbial diversity. Curr Opin Biotechnol. 2002;13:213–217. doi: 10.1016/s0958-1669(02)00314-2. [DOI] [PubMed] [Google Scholar]
  24. Denman S.E., Tomkins N., McSweeney C.S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol. 2007;62:313–322. doi: 10.1111/j.1574-6941.2007.00394.x. [DOI] [PubMed] [Google Scholar]
  25. Dhillon A., Lever M., Lloyd K.G., Albert D.B., Sogin M.L., Teske A. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Appl Environ Microbiol. 2005;71:4592–4601. doi: 10.1128/AEM.71.8.4592-4601.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Doerfert S.N., Reichlen M., Iyer P., Wang M.Y., Ferry J.G. Methanolobus zinderi sp nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol. 2009;59:1064–1069. doi: 10.1099/ijs.0.003772-0. [DOI] [PubMed] [Google Scholar]
  27. Dojka M.A., Hugenholtz P., Haack S.K., Pace N.R. Microbial diversity in a hydrocarbon‐ and chlorinated‐solvent‐contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol. 1998;64:3869–3877. doi: 10.1128/aem.64.10.3869-3877.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Embley T.M., Finlay B.J., Thomas R.H., Dyal P.L. The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol. 1992;138:1479–1487. doi: 10.1099/00221287-138-7-1479. [DOI] [PubMed] [Google Scholar]
  29. Falz K.Z., Holliger C., Grosskopf R., Liesack W., Nozhevnikova A.N., Muller B. Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland) Appl Environ Microbiol. 1999;65:2402–2408. doi: 10.1128/aem.65.6.2402-2408.1999. et al. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Franke‐Whittle I.H., Goberna M., Insam H. Design and testing of real‐time PCR primers for the quantification of Methanoculleus, Methanosarcina, Methanothermobacter, and a group of uncultured methanogens. Can J Microbiol. 2009a;55:611–616. doi: 10.1139/w08-157. [DOI] [PubMed] [Google Scholar]
  31. Franke‐Whittle I.H., Goberna M., Pfister V., Insam H. Design and development of the ANAEROCHIP microarray for investigation of methanogenic communities. J Microbiol Methods. 2009b;79:279–288. doi: 10.1016/j.mimet.2009.09.017. [DOI] [PubMed] [Google Scholar]
  32. Frey J.C., Pell A.N., Berthiaume R., Lapierre H., Lee S., Ha J.K. Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows. J Appl Microbiol. 2009;108:1982–1993. doi: 10.1111/j.1365-2672.2009.04602.x. et al. [DOI] [PubMed] [Google Scholar]
  33. Friedrich M.W. Methyl‐coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane‐oxidizing Archaea. Methods Enzymol. 2005;397:428–442. doi: 10.1016/S0076-6879(05)97026-2. [DOI] [PubMed] [Google Scholar]
  34. Galand P.E., Saarnio S., Fritze H., Yrjala K. Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol. 2002;42:441–449. doi: 10.1111/j.1574-6941.2002.tb01033.x. [DOI] [PubMed] [Google Scholar]
  35. Galand P.E., Juottonen H., Fritze H., Yrjala K. Methanogen communities in a drained bog: effect of ash fertilization. Microbial Ecol. 2005;49:209–217. doi: 10.1007/s00248-003-0229-2. [DOI] [PubMed] [Google Scholar]
  36. Garrity G.M., Holt J.G. Phylum AII. Euryarchaeota phy. nov. In: Boone D.R., Castenholz R.W., Garrity G.M., editors. 2nd. Springer‐Verlag; 2001. pp. 211–355. [Google Scholar]
  37. Garrity G.M., Lilburn T.G., Cole J.R., Harrison S.H., Euzeby J., Tindall B.J. 2007. , and Part 1 The‘Archaea’, Phyla‘Crenarchaeota’ and‘Euryarchaeota’[WWW document]. URL http://www.taxonomicoutline.org/index.php/toba/article/view/178/210.
  38. Griffin M.E., McMahon K.D., Mackie R.I., Raskin L. Methanogenic population dynamics during start‐up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng. 1998;57:342–355. doi: 10.1002/(sici)1097-0290(19980205)57:3<342::aid-bit11>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  39. Grosskopf R., Janssen P.H., Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol. 1998;64:960–969. doi: 10.1128/aem.64.3.960-969.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Hales B.A., Edwards C., Ritchie D.A., Hall G., Pickup R.W., Saunders J.R. Isolation and identification of methanogen‐specific DNA from blanket bog feat by PCR amplification and sequence analysis. Appl Environ Microbiol. 1996;62:668–675. doi: 10.1128/aem.62.2.668-675.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Harmsen H.J.M., Kengen K.M.P., Akkermans A.D.L., Stams A.J.M. Phylogenetic analysis of two syntrophic propionate‐oxidizing bacteria in enrichments cultures. Syst Appl Microbiol. 1995;18:67–73. [Google Scholar]
  42. Harmsen H.J.M., Kengen H.M.P., Akkermans A.D.L., Stams A.J.M., deVos W.M. Detection and localization of syntrophic propionate‐oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA‐based oligonucleotide probes. Appl Environ Microbiol. 1996;62:1656–1663. doi: 10.1128/aem.62.5.1656-1663.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hook S.E., Northwood K.S., Wright A.D.G., McBride B.W. Long‐term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl Environ Microbiol. 2009;75:374–380. doi: 10.1128/AEM.01672-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hori T., Haruta S., Ueno Y., Ishii M., Igarashi Y. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol. 2006;72:1623–1630. doi: 10.1128/AEM.72.2.1623-1630.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Horn M.A., Matthies C., Kusel K., Schramm A., Drake H.L. Hydrogenotrophic methanogenesis by moderately acid‐tolerant methanogens of a methane‐emitting acidic peat. Appl Environ Microbiol. 2003;69:74–83. doi: 10.1128/AEM.69.1.74-83.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Huang W.E., Stoecker K., Griffiths R., Newbold L., Daims H., Whiteley A.S., Wagner M. Raman‐FISH: combining stable‐isotope raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol. 2007;9:1878–1889. doi: 10.1111/j.1462-2920.2007.01352.x. [DOI] [PubMed] [Google Scholar]
  47. Huang W.E., Ferguson A., Singer A.C., Lawson K., Thompson I.P., Kalin R.M. Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single‐cell raman‐fluorescence in situ hybridization. Appl Environ Microbiol. 2009;75:234–241. doi: 10.1128/AEM.01861-08. et al. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol. 2002;3:REVIEWS0003. doi: 10.1186/gb-2002-3-2-reviews0003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Iino T., Mori K., Suzuki K. Methanospirillum lacunae sp. nov., a methane‐producing archaeon isolated from a puddly soil, and the emendation of the genus Methanospirillum and Methanospirillum hungatei. Int J Syst Evol Microbiol. 2010;60:2563–2566. doi: 10.1099/ijs.0.020131-0. [DOI] [PubMed] [Google Scholar]
  50. Imachi H., Sekiguchi Y., Kamagata Y., Ohashi A., Harada H. Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol. 2000;66:3608–3615. doi: 10.1128/aem.66.8.3608-3615.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Imachi H., Sakai S., Sekiguchi Y., Hanada S., Kamagata Y., Ohashi A., Harada H. Methanolinea tarda gen. nov., sp nov., a methane‐producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol. 2008;58:294–301. doi: 10.1099/ijs.0.65394-0. [DOI] [PubMed] [Google Scholar]
  52. Imachi H., Sakai S., Nagai H., Yamaguchi T., Takai K. Methanofollis ethanolicus sp nov., an ethanol‐utilizing methanogen isolated from a lotus field. Int J Syst Evol Microbiol. 2009;59:800–805. doi: 10.1099/ijs.0.003731-0. [DOI] [PubMed] [Google Scholar]
  53. Inagaki F., Tsunogai U., Suzuki M., Kosaka A., Machiyama H., Takai K. Characterization of C‐1‐metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol. 2004;70:7445–7455. doi: 10.1128/AEM.70.12.7445-7455.2004. et al. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Jerman V., Metje M., Mandic‐Mulec I., Frenzel P. Wetland restoration and methanogenesis: the activity of microbial populations and competition for substrates at different temperatures. Biogeosciences. 2009;6:1127–1138. [Google Scholar]
  55. Juottonen H., Galand P.E., Tuittila E.S., Laine J., Fritze H., Yrjala K. Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol. 2005;7:1547–1557. doi: 10.1111/j.1462-2920.2005.00838.x. [DOI] [PubMed] [Google Scholar]
  56. Juottonen H., Galand P.E., Yrjala K. Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol. 2006;157:914–921. doi: 10.1016/j.resmic.2006.08.006. [DOI] [PubMed] [Google Scholar]
  57. Kalyuzhnaya M.G., Lapidus A., Ivanova N., Copeland A.C., McHardy A.C., Szeto E. High‐resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol. 2008;26:1029–1034. doi: 10.1038/nbt.1488. et al. [DOI] [PubMed] [Google Scholar]
  58. Kawakami S., Kubota K., Imachi H., Yamaguchi T., Harada H., Ohashi A. Detection of single copy genes by two‐pass tyramide signal amplification fluorescence in situ hybridization (two‐pass TSA‐FISH) with single oligonucleotide probes. Microbes Environ. 2010;25:15–21. doi: 10.1264/jsme2.me09180. [DOI] [PubMed] [Google Scholar]
  59. Kemnitz D., Chin K.J., Bodelier P., Conrad R. Community analysis of methanogenic archaea within a riparian flooding gradient. Environ Microbiol. 2004;6:449–461. doi: 10.1111/j.1462-2920.2004.00573.x. [DOI] [PubMed] [Google Scholar]
  60. Kleikemper J., Pombo S.A., Schroth M.H., Sigler W.V., Pesaro M., Zeyer J. Activity and diversity of methanogens in a petroleum hydrocarbon‐contaminated aquifer. Appl Environ Microbiol. 2005;71:149–158. doi: 10.1128/AEM.71.1.149-158.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Krivushin K.V., Shcherbakova V.A., Petrovskaya L.E., Rivkina E.M. Methanobacterium veterum sp nov., from ancient Siberian permafrost. Int J Syst Evol Microbiol. 2010;60:455–459. doi: 10.1099/ijs.0.011205-0. [DOI] [PubMed] [Google Scholar]
  62. Kubota K., Ohashi A., Imachi H., Harada H. Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two‐pass tyramide signal amplification (two‐pass TSA‐FISH) J Microbiol Methods. 2006;66:521–528. doi: 10.1016/j.mimet.2006.02.002. [DOI] [PubMed] [Google Scholar]
  63. Kubota K., Imachi H., Kawakami S., Nakamura K., Harada H., Ohashi A. Evaluation of enzymatic cell treatments for application of CARD‐FISH to methanogens. J Microbiol Methods. 2008;72:54–59. doi: 10.1016/j.mimet.2007.10.006. [DOI] [PubMed] [Google Scholar]
  64. Laloui‐Carpentier W., Li T., Vigneron V., Mazeas L., Bouchez T. Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie Van Leeuwenhoek. 2006;89:423–434. doi: 10.1007/s10482-005-9051-9. [DOI] [PubMed] [Google Scholar]
  65. Lane D.J. 16S/23S rRNA sequencing. In: Stackebrandt E., Goodfellow M., editors. John Wiley & Sons; 1991. pp. 115–175. [Google Scholar]
  66. Lehmann‐Richter S., Grosskopf R., Liesack W., Frenzel P., Conrad R. Methanogenic archaea and CO2‐dependent methanogenesis on washed rice roots. Environ Microbiol. 1999;1:159–166. doi: 10.1046/j.1462-2920.1999.00019.x. [DOI] [PubMed] [Google Scholar]
  67. Li T.L., Mazeas L., Sghir A., Leblon G., Bouchez T. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ Microbiol. 2009;11:889–904. doi: 10.1111/j.1462-2920.2008.01810.x. [DOI] [PubMed] [Google Scholar]
  68. Liu W.T., Chan O.C., Fang H.H.P. Microbial community dynamics during start‐up of acidogenic anaerobic reactors. Water Res. 2002;36:3203–3210. doi: 10.1016/s0043-1354(02)00022-2. [DOI] [PubMed] [Google Scholar]
  69. Liu Y.C., Whitman W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci. 2008;1125:171–189. doi: 10.1196/annals.1419.019. [DOI] [PubMed] [Google Scholar]
  70. Lu Y.H., Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science. 2005;309:1088–1090. doi: 10.1126/science.1113435. [DOI] [PubMed] [Google Scholar]
  71. Lu Y.H., Lueders T., Friedrich M.W., Conrad R. Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol. 2005;7:326–336. doi: 10.1111/j.1462-2920.2005.00697.x. [DOI] [PubMed] [Google Scholar]
  72. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–1371. doi: 10.1093/nar/gkh293. et al. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Lueders T., Chin K.J., Conrad R., Friedrich M. Molecular analyses of methyl‐coenzyme M reductase alpha‐subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol. 2001;3:194–204. doi: 10.1046/j.1462-2920.2001.00179.x. [DOI] [PubMed] [Google Scholar]
  74. Lueders T., Pommerenke B., Friedrich M.W. Stable‐isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol. 2004;70:5778–5786. doi: 10.1128/AEM.70.10.5778-5786.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Luton P.E., Wayne J.M., Sharp R.J., Riley P.W. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology. 2002;148:3521–3530. doi: 10.1099/00221287-148-11-3521. [DOI] [PubMed] [Google Scholar]
  76. McMahon K.D., Zheng D.D., Stams A.J.M., Mackie R.I., Raskin L. Microbial population dynamics during start‐up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol Bioeng. 2004;87:823–834. doi: 10.1002/bit.20192. [DOI] [PubMed] [Google Scholar]
  77. Manefield M., Whiteley A.S., Griffiths R.I., Bailey M.J. RNA stable isotope probing, a novel means of linking microbial community function to Phylogeny. Appl Environ Microbiol. 2002;68:5367–5373. doi: 10.1128/AEM.68.11.5367-5373.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Marchesi J.R., Weightman A.J., Cragg B.A., Parkes R.J., Fry J.C. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol Ecol. 2001;34:221–228. doi: 10.1111/j.1574-6941.2001.tb00773.x. [DOI] [PubMed] [Google Scholar]
  79. Mochimaru H., Yoshioka H., Tamaki H., Nakamura K., Kaneko N., Sakata S. Microbial diversity and methanogenic potential in a high temperature natural gas field in Japan. Extremophiles. 2007;11:453–461. doi: 10.1007/s00792-006-0056-8. et al. [DOI] [PubMed] [Google Scholar]
  80. Mochimaru H., Tamaki H., Hanada S., Imachi H., Nakamura K., Sakata S., Kamagata Y. Methanolobus profundi sp nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol. 2009;59:714–718. doi: 10.1099/ijs.0.001677-0. [DOI] [PubMed] [Google Scholar]
  81. Nakamura K., Terada T., Sekiguchi Y., Shinzato N., Meng X.Y., Enoki M., Kamagata Y. Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteliaceae. Appl Environ Microbiol. 2006;72:6907–6913. doi: 10.1128/AEM.01499-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Narihiro T., Sekiguchi Y. Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol. 2007;18:273–278. doi: 10.1016/j.copbio.2007.04.003. [DOI] [PubMed] [Google Scholar]
  83. Narihiro T., Terada T., Kikuchi K., Iguchi A., Ikeda M., Yamauchi T. Comparative analysis of bacterial and archaeal communities in methanogenic sludge granules from upflow anaerobic sludge blanket reactors treating various food‐processing, high‐strength organic wastewaters. Microbes Environ. 2009a;24:88–96. doi: 10.1264/jsme2.me08561. et al. [DOI] [PubMed] [Google Scholar]
  84. Narihiro T., Terada T., Ohashi A., Wu J.H., Liu W.T., Araki N. Quantitative detection of culturable methanogenic archaea abundance in anaerobic treatment systems using the sequence‐specific rRNA cleavage method. ISME J. 2009b;3:522–535. doi: 10.1038/ismej.2009.4. et al. [DOI] [PubMed] [Google Scholar]
  85. Nercessian D., Upton M., Lloyd D., Edwards C. Phylogenetic analysis of peat bog methanogen populations. FEMS Microbiol Lett. 1999;173:425–429. doi: 10.1111/j.1574-6968.2000.tb09436.x. [DOI] [PubMed] [Google Scholar]
  86. Nercessian O., Prokofeva M., Lebedinski A., L'Haridon S., Cary C., Prieur D., Jeanthon C. Design of 16S rRNA‐targeted oligonucleotide probes for detecting cultured and uncultured archaeal lineages in high‐temperature environments. Environ Microbiol. 2004;6:170–182. doi: 10.1046/j.1462-2920.2003.00560.x. [DOI] [PubMed] [Google Scholar]
  87. Nercessian O., Bienvenu N., Moreira D., Prieur D., Jeanthon C. Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep‐sea hydrothermal environments. Environ Microbiol. 2005;7:118–132. doi: 10.1111/j.1462-2920.2004.00672.x. [DOI] [PubMed] [Google Scholar]
  88. Neu T.R., Kuhlicke U., Lawrence J.R. Assessment of fluorochromes for two‐photon laser scanning microscopy of biofilms. Appl Environ Microbiol. 2002;68:901–909. doi: 10.1128/AEM.68.2.901-909.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Nunoura T., Oida H., Toki T., Ashi J., Takai K., Horikoshi K. Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough. FEMS Microbiol Ecol. 2006;57:149–157. doi: 10.1111/j.1574-6941.2006.00101.x. [DOI] [PubMed] [Google Scholar]
  90. Nunoura T., Oida H., Miyazaki J., Miyashita A., Imachi H., Takai K. Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS Microbiol Ecol. 2008;64:240–247. doi: 10.1111/j.1574-6941.2008.00451.x. [DOI] [PubMed] [Google Scholar]
  91. Orphan V.J., House C.H., Hinrichs K.U., McKeegan K.D., DeLong E.F. Methane‐consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001;293:484–487. doi: 10.1126/science.1061338. [DOI] [PubMed] [Google Scholar]
  92. Ottesen E.A., Hong J.W., Quake S.R., Leadbetter J.R. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science. 2006;314:1464–1467. doi: 10.1126/science.1131370. [DOI] [PubMed] [Google Scholar]
  93. Ovreas L., Forney L., Daae F.L., Torsvik V. Distribution of bacterioplankton in meromictic lake Saelenvanner, as determined by denaturing gradient gel electrophoresis of PCR‐amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1997;63:3367–3373. doi: 10.1128/aem.63.9.3367-3373.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Penning H., Claus P., Casper P., Conrad R. Carbon isotope fractionation during acetoclastic methanogenesis by Methanosaeta concilii in culture and a lake sediment. Appl Environ Microbiol. 2006;72:5648–5652. doi: 10.1128/AEM.00727-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Plumb J.J., Bell J., Stuckey D.C. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl Environ Microbiol. 2001;67:3226–3235. doi: 10.1128/AEM.67.7.3226-3235.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Poulsen L.K., Ballard G., Stahl D.A. Use of ribosomal‐RNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol. 1993;59:1354–1360. doi: 10.1128/aem.59.5.1354-1360.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Radajewski S., Ineson P., Parekh N.R., Murrell J.C. Stable‐isotope probing as a tool in microbial ecology. Nature. 2000;403:646–649. doi: 10.1038/35001054. [DOI] [PubMed] [Google Scholar]
  98. Ramakrishnan B., Lueders T., Dunfield P.F., Conrad R., Friedrich M.W. Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol. 2001;37:175–186. [Google Scholar]
  99. Raskin L., Poulsen L.K., Noguera D.R., Rittmann B.E., Stahl D.A. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol. 1994a;60:1241–1248. doi: 10.1128/aem.60.4.1241-1248.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Raskin L., Stromley J.M., Rittmann B.E., Stahl D.A. Group‐specific 16S ribosomal‐RNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol. 1994b;60:1232–1240. doi: 10.1128/aem.60.4.1232-1240.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Raskin L., Zheng D.D., Griffin M.E., Stroot P.G., Misra P. Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie Van Leeuwenhoek. 1995;68:297–308. doi: 10.1007/BF00874140. [DOI] [PubMed] [Google Scholar]
  102. Reysenbach A.‐L., Pace N.R. Thermophiles. In: Robb F.T., Place A.R., editors. Cold Spring Harbour Press; 1995. pp. 101–107. [Google Scholar]
  103. Rocheleau S., Greer C.W., Lawrence J.R., Cantin C., Laramee L., Guiot S.R. Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy. Appl Environ Microbiol. 1999;65:2222–2229. doi: 10.1128/aem.65.5.2222-2229.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Sakai S., Imachi H., Hanada S., Ohashi A., Harada H., Kamagata Y. Methanocella paludicola gen. nov., sp nov., a methane‐producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol. 2008;58:929–936. doi: 10.1099/ijs.0.65571-0. [DOI] [PubMed] [Google Scholar]
  105. Sakai S., Imachi H., Sekiguchi Y., Ohashi A., Harada H., Kamagata Y. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol. 2007;73:4326–4331. doi: 10.1128/AEM.03008-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Sakai S., Conrad R., Liesack W., Imachi H. Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen, isolated from Italian rice field soil. Int J Syst Evol Microbiol. 2010;60:2918–2923. doi: 10.1099/ijs.0.020883-0. [DOI] [PubMed] [Google Scholar]
  107. Sawayama S., Tada C., Tsukahara K., Yagishita T. Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J Biosci Bioeng. 2004;97:65–70. doi: 10.1016/S1389-1723(04)70167-X. [DOI] [PubMed] [Google Scholar]
  108. Sawayama S., Tsukahara K., Yagishita T. Phylogenetic description of immobilized methanogenic community using real‐time PCR in a fixed‐bed anaerobic digester. Bioresour Technol. 2006;97:69–76. doi: 10.1016/j.biortech.2005.02.011. [DOI] [PubMed] [Google Scholar]
  109. Scanlan P.D., Shanahan F., Marchesi J.R. Human methanogen diversity and incidence in healthy and diseased colonic group using mcrA gene analysis. BMC Microbiol. 2008;8:79. doi: 10.1186/1471-2180-8-79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 1997;61:262–280. doi: 10.1128/mmbr.61.2.262-280.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Sekiguchi Y. Yet‐to‐be cultured microorganisms relevant to methane fermentation processes. Microbes Environ. 2006;21:1–15. [Google Scholar]
  112. Sekiguchi Y., Kamagata Y. Microbial community structure and functions in methane fermentation technology for wastewater treatment. In: Nakano M.M., Zuber P., editors. Horizon Bioscience; 2004. pp. 361–384. [Google Scholar]
  113. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. Fluorescence in situ hybridization using 16S rRNA‐targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol. 1999;65:1280–1288. doi: 10.1128/aem.65.3.1280-1288.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Sekiguchi Y., Uyeno Y., Sunaga A., Yoshida H., Kamagata Y. Sequence‐specific cleavage of 16S rRNA for rapid and quantitative detection of particular groups of anaerobes in bioreactors. Water Sci Technol. 2005;52:107–113. [PubMed] [Google Scholar]
  115. Shcherbakova V.A., Rivkina E.M., Pecheritsyna S., Laurinavichuis K., Suzina N.E., Gilichinsky D. Methanobacterium arcticum sp.nov., methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Microbiol. 2010 doi: 10.1099/ijs.0.021311-0. [DOI] [PubMed] [Google Scholar]
  116. Shigematsu T., Tang Y.Q., Kawaguchi H., Ninomiya K., Kijima J., Kobayashi T. Effect of dilution rate on structure of a mesophilic acetate‐degrading methanogenic community during continuous cultivation. J Biosci Bioeng. 2003;96:547–558. doi: 10.1016/S1389-1723(04)70148-6. et al. [DOI] [PubMed] [Google Scholar]
  117. Shigematsu T., Tang Y.Q., Kobayashi T., Kawaguchi H., Morimura S., Kida K. Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol. 2004;70:4048–4052. doi: 10.1128/AEM.70.7.4048-4052.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Shinzato N., Watanabe I., Meng X.Y., Sekiguchi Y., Tamaki H., Matsui T., Kamagata Y. Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb Ecol. 2007;54:627–636. doi: 10.1007/s00248-007-9218-1. [DOI] [PubMed] [Google Scholar]
  119. Skillman L.C., Evans P.N., Naylor G.E., Morvan B., Jarvis G.N., Joblin K.N. 16S ribosomal DNA‐directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe. 2004;10:277–285. doi: 10.1016/j.anaerobe.2004.05.003. [DOI] [PubMed] [Google Scholar]
  120. Smith J.M., Green S.J., Kelley C.A., Prufert‐Bebout L., Bebout B.M. Shifts in methanogen community structure and function associated with long‐term manipulation of sulfate and salinity in a hypersaline microbial mat. Environ Microbiol. 2008;10:386–394. doi: 10.1111/j.1462-2920.2007.01459.x. [DOI] [PubMed] [Google Scholar]
  121. Sorensen A.H., Ahring B.K. An improved enzyme‐linked immunosorbent assay for whole‐cell determination of methanogens in samples from anaerobic reactors. Appl Environ Microbiol. 1997;63:2001–2006. doi: 10.1128/aem.63.5.2001-2006.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Springer E., Sachs M.S., Woese C.R., Boone D.R. Partial gene sequences for the A subunit of methyl‐coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol. 1995;45:554–559. doi: 10.1099/00207713-45-3-554. [DOI] [PubMed] [Google Scholar]
  123. Stahl D.A., Amann R. Development and application of nucleic acid probes. In: Stackebrandt E., Goodfellow M., editors. Wiley; 1991. pp. 205–248. [Google Scholar]
  124. Stahl D.A., Flesher B., Mansfield H.R., Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988;54:1079–1084. doi: 10.1128/aem.54.5.1079-1084.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Steinberg L.M., Regan J.M. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol. 2008;74:6663–6671. doi: 10.1128/AEM.00553-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Steinberg L.M., Regan J.M. mcrA‐targeted real‐time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol. 2009;75:4435–4442. doi: 10.1128/AEM.02858-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Strapoc D., Picardal F.W., Turich C., Schaperdoth I., Macalady J.L., Lipp J.S. Methane‐producing microbial community in a coal bed of the Illinois Basin. Appl Environ Microbiol. 2008;74:2424–2432. doi: 10.1128/AEM.02341-07. et al. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Sul W.J., Park J., Quensen J.F., Rodrigues J.L.M., Seliger L., Tsoi T.V. DNA‐stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl‐contaminated river sediment. Appl Environ Microbiol. 2009;75:5501–5506. doi: 10.1128/AEM.00121-09. et al. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Tabatabaei M., Rahim R.A., Abdullah N., Wright A.‐D.G., Shirai Y., Sakai K. Importance of the methanogenic archaea populations in anaerobic wastewater treatments. Process Biochem. 2010;45:1214–1225. et al. [Google Scholar]
  130. Takai K., Nakamura K., Toki T., Tsunogai U., Miyazaki M., Miyazaki J. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high‐pressure cultivation. Proc Natl Acad Sci USA. 2008;105:10949–10954. doi: 10.1073/pnas.0712334105. et al. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Talbot G., Topp E., Palin M.F., Masse D.I. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res. 2008;42:513–537. doi: 10.1016/j.watres.2007.08.003. [DOI] [PubMed] [Google Scholar]
  132. Tang Y.Q., Shigematsu T., Morimura S., Kida K. Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)‐fed continuous cultivation. J Biosci Bioeng. 2005;99:150–164. doi: 10.1263/jbb.99.150. [DOI] [PubMed] [Google Scholar]
  133. Tatsuoka N., Mohammed N., Mitsumori M., Hara K., Kurihara M., Itabashi H. Phylogenetic analysis of methyl coenzyme‐M reductase detected from the bovine rumen. Lett Appl Microbiol. 2004;39:257–260. doi: 10.1111/j.1472-765X.2004.01566.x. [DOI] [PubMed] [Google Scholar]
  134. Thauer R.K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology. 1998;144:2377–2406. doi: 10.1099/00221287-144-9-2377. [DOI] [PubMed] [Google Scholar]
  135. Thauer R.K., Shima S. Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci. 2008;1125:158–170. doi: 10.1196/annals.1419.000. [DOI] [PubMed] [Google Scholar]
  136. Tringe S.G., Hugenholtz P. A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol. 2008;11:442–446. doi: 10.1016/j.mib.2008.09.011. [DOI] [PubMed] [Google Scholar]
  137. Tung H.C., Bramall N.E., Price P.B. Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc Natl Acad Sci USA. 2005;102:18292–18296. doi: 10.1073/pnas.0507601102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Ufnar J.A., Ufnar D.F., Wang S.Y., Ellender R.D. Development of a swine‐specific fecal pollution marker based on host differences in methanogen mcrA genes. Appl Environ Microbiol. 2007;73:5209–5217. doi: 10.1128/AEM.00319-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Uyeno Y., Sekiguchi Y., Sunaga A., Yoshida H., Kamagata Y. Sequence‐specific cleavage of small‐subunit (SSU) rRNA with oligonucleotides and RNase H: a rapid and simple approach to SSU rRNA‐based quantitative detection of microorganisms. Appl Environ Microbiol. 2004;70:3650–3663. doi: 10.1128/AEM.70.6.3650-3663.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Vavilin V.A., Qu X., Mazeas L., Lemunier M., Duquennoi C., He P.J., Bouchez T. Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste. Antonie Van Leeuwenhoek. 2008;94:593–605. doi: 10.1007/s10482-008-9279-2. [DOI] [PubMed] [Google Scholar]
  141. Vianna M.E., Holtgraewe S., Seyfarth I., Conrads G., Horz H.P. Quantitative analysis of three hydrogenotrophic microbial groups, methanogenic archaea, sulfate‐reducing bacteria, and acetogenic bacteria, within plaque biofilms associated with human periodontal disease. J Bacteriol. 2008;190:3779–3785. doi: 10.1128/JB.01861-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Visser F.A., van Lier J.B., Macario A.J.L., de Macario E.C. Diversity and population dynamics of methanogenic bacteria in a granular consortium. Appl Environ Microbiol. 1991;57:1728–1734. doi: 10.1128/aem.57.6.1728-1734.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Wang F.P., Zhou H.Y., Meng J., Peng X.T., Jiang L.J., Sun P. GeoChip‐based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proc Natl Acad Sci USA. 2009;106:4840–4845. doi: 10.1073/pnas.0810418106. et al. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Weijers J.W.H., Schouten S., van der Linden M., van Geel B., Damste J.S.S. Water table related variations in the abundance of intact archaeal membrane lipids in a Swedish peat bog. FEMS Microbiol Lett. 2004;239:51–56. doi: 10.1016/j.femsle.2004.08.012. [DOI] [PubMed] [Google Scholar]
  145. Wright A.D.G., Pimm C. Improved strategy for presumptive identification of methanogens using 16S riboprinting. J Microbiol Methods. 2003;55:337–349. doi: 10.1016/s0167-7012(03)00169-6. [DOI] [PubMed] [Google Scholar]
  146. Wu J.H., Liu W.T. Quantitative multiplexing analysis of PCR‐amplified ribosomal RNA genes by hierarchical oligonucleotide primer extension reaction. Nucleic Acids Res. 2007;35:e82. doi: 10.1093/nar/gkm413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Yanagita K., Kamagata Y., Kawaharasaki M., Suzuki T., Nakamura Y., Minato H. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem. 2000;64:1737–1742. doi: 10.1271/bbb.64.1737. [DOI] [PubMed] [Google Scholar]
  148. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.H. The All‐Species Living Tree project: a 16S rRNA‐based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol. 2008;31:241–250. doi: 10.1016/j.syapm.2008.07.001. et al. [DOI] [PubMed] [Google Scholar]
  149. Yashiro Y., Sakai S., Ehara M., Miyazaki M., Yamaguchi T., Imachi H. Methanoregula formicica sp. nov., a novel methane‐producing archaeon isolated from methanogenic sludge. Int J Syst Evol Microbiol. 2009 doi: 10.1099/ijs.0.014811-0. [DOI] [PubMed] [Google Scholar]
  150. Yu Y., Lee C., Kim J., Hwang S. Group‐specific primer and probe sets to detect methanogenic communities using quantitative real‐time polymerase chain reaction. Biotechnol Bioeng. 2005;89:670–679. doi: 10.1002/bit.20347. [DOI] [PubMed] [Google Scholar]
  151. Yu Y., Kim J., Hwang S. Use of real‐time PCR for group‐specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng. 2006;93:424–433. doi: 10.1002/bit.20724. [DOI] [PubMed] [Google Scholar]
  152. Yu Z.T., Garcia‐Gonzalez R., Schanbacher F.L., Morrison M. Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens denaturing by Archaea‐specific PCR and gradient gel electrophoresis. Appl Environ Microbiol. 2008;74:889–893. doi: 10.1128/AEM.00684-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Zhang G.S., Jiang N., Liu X.L., Dong X.Z. Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, ‘Methanolobus psychrophilus’ sp nov., prevalent in Zoige wetland of the Tibetan plateau. Appl Environ Microbiol. 2008a;74:6114–6120. doi: 10.1128/AEM.01146-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Zhang G.S., Tian J.Q., Jiang N., Guo X.P., Wang Y.F., Dong X.Z. Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC‐I. Environ Microbiol. 2008b;10:1850–1860. doi: 10.1111/j.1462-2920.2008.01606.x. [DOI] [PubMed] [Google Scholar]
  155. Zhang T., Fang H.H.P. Applications of real‐time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl Microbiol Biotechnol. 2006;70:281–289. doi: 10.1007/s00253-006-0333-6. [DOI] [PubMed] [Google Scholar]
  156. Zheng D., Raskin L. Quantification of Methanosaeta species in anaerobic bioreactors using genus‐ and species‐specific hybridization probes. Microbial Ecol. 2000;39:246–262. doi: 10.1007/s002480000003. [DOI] [PubMed] [Google Scholar]
  157. Zheng D., Angenent L.T., Raskin L. Monitoring granule formation in anaerobic upflow bioreactors using oligonucleotide hybridization probes. Biotechnol Bioeng. 2006;94:458–472. doi: 10.1002/bit.20870. [DOI] [PubMed] [Google Scholar]

Articles from Microbial Biotechnology are provided here courtesy of Wiley

RESOURCES