Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 1;93(20):11035–11040. doi: 10.1073/pnas.93.20.11035

Local stress, not systemic factors, regulate gene expression of the cardiac renin-angiotensin system in vivo: a comprehensive study of all its components in the dog.

Y A Lee 1, C S Liang 1, M A Lee 1, K Lindpaintner 1
PMCID: PMC38279  PMID: 8855304

Abstract

Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.

Full text

PDF
11035

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker K. M., Aceto J. F. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol. 1990 Aug;259(2 Pt 2):H610–H618. doi: 10.1152/ajpheart.1990.259.2.H610. [DOI] [PubMed] [Google Scholar]
  2. Baker K. M., Chernin M. I., Wixson S. K., Aceto J. F. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol. 1990 Aug;259(2 Pt 2):H324–H332. doi: 10.1152/ajpheart.1990.259.2.H324. [DOI] [PubMed] [Google Scholar]
  3. Beinlich C. J., White G. J., Baker K. M., Morgan H. E. Angiotensin II and left ventricular growth in newborn pig heart. J Mol Cell Cardiol. 1991 Sep;23(9):1031–1038. doi: 10.1016/0022-2828(91)91638-8. [DOI] [PubMed] [Google Scholar]
  4. Berk B. C., Vekshtein V., Gordon H. M., Tsuda T. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. 1989 Apr;13(4):305–314. doi: 10.1161/01.hyp.13.4.305. [DOI] [PubMed] [Google Scholar]
  5. Carr D. H., Jennings D. B., Thrasher T. N., Keil L. C., Ramsay D. J. Role of right heart receptors in the control of renin, vasopressin, and cortisol secretion in dogs. Am J Physiol. 1992 Nov;263(5 Pt 2):R1071–R1077. doi: 10.1152/ajpregu.1992.263.5.R1071. [DOI] [PubMed] [Google Scholar]
  6. Chiu A. T., Herblin W. F., McCall D. E., Ardecky R. J., Carini D. J., Duncia J. V., Pease L. J., Wong P. C., Wexler R. R., Johnson A. L. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989 Nov 30;165(1):196–203. doi: 10.1016/0006-291x(89)91054-1. [DOI] [PubMed] [Google Scholar]
  7. Dostal D. E., Rothblum K. N., Chernin M. I., Cooper G. R., Baker K. M. Intracardiac detection of angiotensinogen and renin: a localized renin-angiotensin system in neonatal rat heart. Am J Physiol. 1992 Oct;263(4 Pt 1):C838–C850. doi: 10.1152/ajpcell.1992.263.4.C838. [DOI] [PubMed] [Google Scholar]
  8. Dostal D. E., Rothblum K. N., Conrad K. M., Cooper G. R., Baker K. M. Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol. 1992 Oct;263(4 Pt 1):C851–C863. doi: 10.1152/ajpcell.1992.263.4.C851. [DOI] [PubMed] [Google Scholar]
  9. Feldman A. M., Weinberg E. O., Ray P. E., Lorell B. H. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res. 1993 Jul;73(1):184–192. doi: 10.1161/01.res.73.1.184. [DOI] [PubMed] [Google Scholar]
  10. Finckh M., Hellmann W., Ganten D., Furtwängler A., Allgeier J., Boltz M., Holtz J. Enhanced cardiac angiotensinogen gene expression and angiotensin converting enzyme activity in tachypacing-induced heart failure in rats. Basic Res Cardiol. 1991 Jul-Aug;86(4):303–316. doi: 10.1007/BF02191528. [DOI] [PubMed] [Google Scholar]
  11. Geisterfer A. A., Peach M. J., Owens G. K. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res. 1988 Apr;62(4):749–756. doi: 10.1161/01.res.62.4.749. [DOI] [PubMed] [Google Scholar]
  12. Gilliland G., Perrin S., Blanchard K., Bunn H. F. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2725–2729. doi: 10.1073/pnas.87.7.2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grady E. F., Sechi L. A., Griffin C. A., Schambelan M., Kalinyak J. E. Expression of AT2 receptors in the developing rat fetus. J Clin Invest. 1991 Sep;88(3):921–933. doi: 10.1172/JCI115395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gyurko R., Kimura B., Kurian P., Crews F. T., Phillips M. I. Angiotensin II receptor subtypes play opposite roles in regulating phosphatidylinositol hydrolysis in rat skin slices. Biochem Biophys Res Commun. 1992 Jul 15;186(1):285–292. doi: 10.1016/s0006-291x(05)80805-8. [DOI] [PubMed] [Google Scholar]
  15. Hein L., Barsh G. S., Pratt R. E., Dzau V. J., Kobilka B. K. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 1995 Oct 26;377(6551):744–747. doi: 10.1038/377744a0. [DOI] [PubMed] [Google Scholar]
  16. Ichiki T., Labosky P. A., Shiota C., Okuyama S., Imagawa Y., Fogo A., Niimura F., Ichikawa I., Hogan B. L., Inagami T. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature. 1995 Oct 26;377(6551):748–750. doi: 10.1038/377748a0. [DOI] [PubMed] [Google Scholar]
  17. Imai Y., Matsushima Y., Sugimura T., Terada M. A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res. 1991 May 25;19(10):2785–2785. doi: 10.1093/nar/19.10.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Izumo S., Nadal-Ginard B., Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A. 1988 Jan;85(2):339–343. doi: 10.1073/pnas.85.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johns D. W., Baker K. M., Ayers C. R., Vaughan E. D., Jr, Carey R. M., Peach M. J., Yancey M. R., Ortt E. M., Williams S. C. Acute and chronic effect of captropril in hypertensive patients. Hypertension. 1980 Jul-Aug;2(4):567–575. doi: 10.1161/01.hyp.2.4.567. [DOI] [PubMed] [Google Scholar]
  20. Krieg P. A., Melton D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984 Sep 25;12(18):7057–7070. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liang C. S., Fan T. H., Sullebarger J. T., Sakamoto S. Decreased adrenergic neuronal uptake activity in experimental right heart failure. A chamber-specific contributor to beta-adrenoceptor downregulation. J Clin Invest. 1989 Oct;84(4):1267–1275. doi: 10.1172/JCI114294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liang C. S., Frantz R. P., Suematsu M., Sakamoto S., Sullebarger J. T., Fan T. M., Guthinger L. Chronic beta-adrenoceptor blockade prevents the development of beta-adrenergic subsensitivity in experimental right-sided congestive heart failure in dogs. Circulation. 1991 Jul;84(1):254–266. doi: 10.1161/01.cir.84.1.254. [DOI] [PubMed] [Google Scholar]
  23. Lindpaintner K., Lu W., Neidermajer N., Schieffer B., Just H., Ganten D., Drexler H. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol. 1993 Feb;25(2):133–143. doi: 10.1006/jmcc.1993.1017. [DOI] [PubMed] [Google Scholar]
  24. Linz W., Schölkens B. A., Ganten D. Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens A. 1989;11(7):1325–1350. doi: 10.3109/10641968909038172. [DOI] [PubMed] [Google Scholar]
  25. Lopez J. J., Lorell B. H., Ingelfinger J. R., Weinberg E. O., Schunkert H., Diamant D., Tang S. S. Distribution and function of cardiac angiotensin AT1- and AT2-receptor subtypes in hypertrophied rat hearts. Am J Physiol. 1994 Aug;267(2 Pt 2):H844–H852. doi: 10.1152/ajpheart.1994.267.2.H844. [DOI] [PubMed] [Google Scholar]
  26. Mangiapane M. L., Rauch A. L., MacAndrew J. T., Ellery S. S., Hoover K. W., Knight D. R., Johnson H. A., Magee W. P., Cushing D. J., Buchholz R. A. Vasoconstrictor action of angiotensin I-convertase and the synthetic substrate (Pro11,D-Ala12)-angiotensin I. Hypertension. 1994 Jun;23(6 Pt 2):857–860. doi: 10.1161/01.hyp.23.6.857. [DOI] [PubMed] [Google Scholar]
  27. Murphy T. J., Alexander R. W., Griendling K. K., Runge M. S., Bernstein K. E. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991 May 16;351(6323):233–236. doi: 10.1038/351233a0. [DOI] [PubMed] [Google Scholar]
  28. Murray P. A., Baig H., Fishbein M. C., Vatner S. F. Effects of exerimental right ventricular hypertrophy on myocardial blood flow in conscious dogs. J Clin Invest. 1979 Aug;64(2):421–427. doi: 10.1172/JCI109478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pfeffer J. M., Pfeffer M. A., Mirsky I., Braunwald E. Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci U S A. 1982 May;79(10):3310–3314. doi: 10.1073/pnas.79.10.3310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sadoshima J., Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993 Sep;73(3):413–423. doi: 10.1161/01.res.73.3.413. [DOI] [PubMed] [Google Scholar]
  31. Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
  32. Schuler G., Hambrecht R., Schlierf G., Niebauer J., Hauer K., Neumann J., Hoberg E., Drinkmann A., Bacher F., Grunze M. Regular physical exercise and low-fat diet. Effects on progression of coronary artery disease. Circulation. 1992 Jul;86(1):1–11. doi: 10.1161/01.cir.86.1.1. [DOI] [PubMed] [Google Scholar]
  33. Schunkert H., Dzau V. J., Tang S. S., Hirsch A. T., Apstein C. S., Lorell B. H. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest. 1990 Dec;86(6):1913–1920. doi: 10.1172/JCI114924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sechi L. A., Griffin C. A., Grady E. F., Kalinyak J. E., Schambelan M. Characterization of angiotensin II receptor subtypes in rat heart. Circ Res. 1992 Dec;71(6):1482–1489. doi: 10.1161/01.res.71.6.1482. [DOI] [PubMed] [Google Scholar]
  35. Shin Y., Lohmeier T. E., Hester R. L., Kivlighn S. D., Smith M. J., Jr Hormonal and circulatory responses to chronically controlled increments in right atrial pressure. Am J Physiol. 1991 Nov;261(5 Pt 2):R1176–R1187. doi: 10.1152/ajpregu.1991.261.5.R1176. [DOI] [PubMed] [Google Scholar]
  36. Studer R., Reinecke H., Müller B., Holtz J., Just H., Drexler H. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J Clin Invest. 1994 Jul;94(1):301–310. doi: 10.1172/JCI117322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Suzuki J., Matsubara H., Urakami M., Inada M. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res. 1993 Sep;73(3):439–447. doi: 10.1161/01.res.73.3.439. [DOI] [PubMed] [Google Scholar]
  38. Urata H., Healy B., Stewart R. W., Bumpus F. M., Husain A. Angiotensin II receptors in normal and failing human hearts. J Clin Endocrinol Metab. 1989 Jul;69(1):54–66. doi: 10.1210/jcem-69-1-54. [DOI] [PubMed] [Google Scholar]
  39. Urata H., Kinoshita A., Misono K. S., Bumpus F. M., Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem. 1990 Dec 25;265(36):22348–22357. [PubMed] [Google Scholar]
  40. Viswanathan M., Tsutsumi K., Correa F. M., Saavedra J. M. Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1361–1367. doi: 10.1016/0006-291x(91)91723-p. [DOI] [PubMed] [Google Scholar]
  41. Yamada T., Horiuchi M., Dzau V. J. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):156–160. doi: 10.1073/pnas.93.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES