Abstract
Procaine amide azide, a derivative of the local anesthetic procaine amide, was prepared and its interactions with acetylcholine receptor-rich membrane fragments from Torpedo californica electroplax were studied. Procaine amide azide was radiolabeled by a method that may be of general use for the preparation of other radioactive tertiary amines. When low concentrations of 3H-labeled procaine amide azide were photolyzed in the presence of receptor-rich membrane preparations, a simple pattern of incorporated radioactivity was seen after electrophoresis on sodium dodecyl sulfate/polyacrylamide gels. Only two major labeled bands were seen, corresponding to apparent Mr of about 43,000 and 90,000. When the length of the gels was increased, the labeled band of lower Mr was resolved into two labeled proteins, one major and one minor, with apparent Mr of 43,000 and 40,000, respectively. The radioactivity incorporated into the protein of Mr 40,000 could be attributed to interaction of [3H]procaine amide azide with cholinergic ligand-binding sites, whereas labeling of the polypeptide of Mr 43,000 appears to represent interaction of the photolabile derivative with another class of sites. The labeling component of 90,000 Mr could be removed by preparation of membrane fragments in iodoacetamide-containing buffer and therefore appeared unrelated to the acetylcholine receptor.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreasen T. J., McNamee M. G. Phospholipase A inhibition of acetylcholine receptor function in Torpedo californica membrane vesicles. Biochem Biophys Res Commun. 1977 Dec 7;79(3):958–965. doi: 10.1016/0006-291x(77)91203-7. [DOI] [PubMed] [Google Scholar]
- Bon C., Changeux J. P. Ceruleotoxin: an acidic neurotoxin from the venom of Bungarus caeruleus which blocks the response to a cholinergic agonist without binding to the cholinergic receptor site. FEBS Lett. 1975 Nov 15;59(2):212–216. doi: 10.1016/0014-5793(75)80377-2. [DOI] [PubMed] [Google Scholar]
- Briley M. S., Changeux J. P. Recovery of some functional properties of the detergent-extracted cholinergic receptor protein from Torpedo marmorata after reintegration into a membrane environment. Eur J Biochem. 1978 Mar 15;84(2):429–439. doi: 10.1111/j.1432-1033.1978.tb12184.x. [DOI] [PubMed] [Google Scholar]
- Brisson A., Devaux P. F., Changeux J. P. Effet anesthésique local de plusieurs composés liposolubles sur la réponse de l'électroplaque de Gymnote à la carbamylcholine et sur la liaison de l'acétylcholine au récepteur cholinergique de Torpille. C R Acad Sci Hebd Seances Acad Sci D. 1975 May 12;280(18):2153–2156. [PubMed] [Google Scholar]
- Burgermeister W., Catterall W. A., Witkop B. Histrionicotoxin enhances agonist-induced desensitization of acetylcholine receptor. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5754–5758. doi: 10.1073/pnas.74.12.5754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen J. B., Weber M., Huchet M., Changeux J. P. Purification from Torpedo marmorata electric tissue of membrane fragments particularly rich in cholinergic receptor protein. FEBS Lett. 1972 Oct 1;26(1):43–47. doi: 10.1016/0014-5793(72)80538-6. [DOI] [PubMed] [Google Scholar]
- Daly J. W., Karle I., Myers C. W., Tokuyama T., Waters J. A., Witkop B. Histrionicotoxins: roentgen-ray analysis of the novel allenic and acetylenie spiroalkaloids isolated from a Colombian frog, Dendrobates histrionicus. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1870–1875. doi: 10.1073/pnas.68.8.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duguid J. R., Raftery M. A. Fractionation and partial characterization of membrane particles from Torpedo californica electroplax. Biochemistry. 1973 Sep 11;12(19):3593–3597. doi: 10.1021/bi00743a003. [DOI] [PubMed] [Google Scholar]
- Elliot J., Raftery M. A. Interactions of perhydrohistrionicotoxin with postsynaptic membranes. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1347–1353. doi: 10.1016/s0006-291x(77)80127-7. [DOI] [PubMed] [Google Scholar]
- FURUKAWA T. Properties of the procaine end-plate potential. Jpn J Physiol. 1957 Sep 30;7(3):199–212. doi: 10.2170/jjphysiol.7.199. [DOI] [PubMed] [Google Scholar]
- Gage P. W., Armstrong C. M. Miniature end-plate currents in voltage-clamped muscle fibre. Nature. 1968 Apr 27;218(5139):363–365. doi: 10.1038/218363b0. [DOI] [PubMed] [Google Scholar]
- Grünhagen H. H., Changeux J. P. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. IV. Quinacrine: a fluorescent probe for the conformational transitions of the cholinergic receptor protein in its membrane-bound state. J Mol Biol. 1976 Sep 25;106(3):497–516. doi: 10.1016/0022-2836(76)90249-7. [DOI] [PubMed] [Google Scholar]
- Hucho F., Layer P., Kiefer H. R., Bandini G. Photoaffinity labeling and quaternary structure of the acetylcholine receptor from Torpedo californica. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2624–2628. doi: 10.1073/pnas.73.8.2624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee C. Y., Chang C. C. Modes of actions of purified toxins from elapid venoms on neuromuscular transmission. Mem Inst Butantan. 1966;33(2):555–572. [PubMed] [Google Scholar]
- Lee C. Y., Tseng L. F., Chiu T. H. Influence of denervation on localization of neurotoxins from clapid venoms in rat diaphragm. Nature. 1967 Sep 9;215(5106):1177–1178. doi: 10.1038/2151177a0. [DOI] [PubMed] [Google Scholar]
- Lee T., Witzemann V., Schimerlik M., Raftery M. A. Cholinergic ligand-induced affinity changes in Torpedo californica acetylcholine receptor. Arch Biochem Biophys. 1977 Sep;183(1):57–63. doi: 10.1016/0003-9861(77)90418-0. [DOI] [PubMed] [Google Scholar]
- Levy D., Glover E., Cheng S. The interaction of hepatocyte plasma membranes with an azide derivative of procaine. Biochim Biophys Acta. 1977 Sep 5;469(2):194–201. doi: 10.1016/0005-2736(77)90181-x. [DOI] [PubMed] [Google Scholar]
- Maeno T. Analysis of sodium and potassium conductances in the procaine end-plate potential. J Physiol. 1966 Apr;183(3):592–606. doi: 10.1113/jphysiol.1966.sp007886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magazanik L. G. Functional properties of postjunctional membrane. Annu Rev Pharmacol Toxicol. 1976;16:161–175. doi: 10.1146/annurev.pa.16.040176.001113. [DOI] [PubMed] [Google Scholar]
- Moody T. W., Raftery M. A. Characterization of polypeptide neurotoxins from the venom of Bungarus caeruleus. Arch Biochem Biophys. 1978 Jul;189(1):115–121. doi: 10.1016/0003-9861(78)90123-6. [DOI] [PubMed] [Google Scholar]
- Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976 Apr 29;260(5554):799–802. doi: 10.1038/260799a0. [DOI] [PubMed] [Google Scholar]
- Popot J. L., Sugiyama H., Changeux J. P. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. II. The permeability response of the receptor-rich membrane fragments to cholinergic agonists in vitro. J Mol Biol. 1976 Sep 25;106(3):469–483. doi: 10.1016/0022-2836(76)90247-3. [DOI] [PubMed] [Google Scholar]
- Quast U., Schimerlik M., Lee T., Witzemann T. L., Blanchard S., Raftery M. A. Ligand-induced conformation changes in Torpedo californica membrane-bound acetylcholine receptor. Biochemistry. 1978 Jun 13;17(12):2405–2414. doi: 10.1021/bi00605a024. [DOI] [PubMed] [Google Scholar]
- Reed K., Vandlen R., Bode J., Duguid J., Raftery M. A. Characterization of acetylcholine receptor-rich and acetylcholinesterase-rich membrane particles from Torpedo californica electroplax. Arch Biochem Biophys. 1975 Mar;167(1):138–144. doi: 10.1016/0003-9861(75)90449-x. [DOI] [PubMed] [Google Scholar]
- Ruff R. L. Local anesthetic alteration of miniature endplate currents and endplate current fluctuations. Biophys J. 1976 May;16(5):433–439. doi: 10.1016/S0006-3495(76)85699-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiebler W., Lauffer L., Hucho F. Acetylcholine receptor enriched membranes: acetylcholine binding and excitability after reduction in vitro. FEBS Lett. 1977 Sep 1;81(1):39–42. doi: 10.1016/0014-5793(77)80923-x. [DOI] [PubMed] [Google Scholar]
- Schimerlik M., Raftery M. A. A fluorescence probe of acetylcholine receptor conformation and local anesthetic binding. Biochem Biophys Res Commun. 1976 Dec 6;73(3):607–613. doi: 10.1016/0006-291x(76)90853-6. [DOI] [PubMed] [Google Scholar]
- Schmidt J., Raftery M. A. A simple assay for the study of solubilized acetylcholine receptors. Anal Biochem. 1973 Apr;52(2):349–354. doi: 10.1016/0003-2697(73)90036-5. [DOI] [PubMed] [Google Scholar]
- Sobel A., Heidmann T., Hofler J., Changeux J. P. Distinct protein components from Torpedo marmorata membranes carry the acetylcholine receptor site and the binding site for local anesthetics and histrionicotoxin. Proc Natl Acad Sci U S A. 1978 Jan;75(1):510–514. doi: 10.1073/pnas.75.1.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staros J. V., Bayley H., Standring D. N., Knowles J. R. Reduction of aryl azides by thiols: implications for the use of photoaffinity reagents. Biochem Biophys Res Commun. 1978 Feb 14;80(3):568–572. doi: 10.1016/0006-291x(78)91606-6. [DOI] [PubMed] [Google Scholar]
- Steinbach A. B. A kinetic model for the action of xylocaine on receptors for acetylcholine. J Gen Physiol. 1968 Jul;52(1):162–180. doi: 10.1085/jgp.52.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbach A. B. Alteration by xylocaine (lidocaine) and its derivatives of the time course of the end plate potential. J Gen Physiol. 1968 Jul;52(1):144–161. doi: 10.1085/jgp.52.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbach J. H. Local anesthetic molecules transiently block currents through individual open acetylcholine receptor channels [proceedings]. Biophys J. 1977 Jun;18(3):357–358. doi: 10.1016/S0006-3495(77)85621-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber M., Changeux J. P. Binding of Naja nigricollis (3H)alpha-toxin to membrane fragments from Electrophorus and Torpedo electric organs. 3. Effects of local anaesthetics on the binding of the tritiated alpha-neurotoxin. Mol Pharmacol. 1974 Jan;10(1):35–40. [PubMed] [Google Scholar]
- Weber M., David-Pfeuty T., Changeux J. P. Regulation of binding properties of the nicotinic receptor protein by cholinergic ligands in membrane fragments from Torpedo marmorata. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3443–3447. doi: 10.1073/pnas.72.9.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiland G., Georgia B., Lappi S., Chignell C. F., Taylor P. Kinetics of agonist-mediated transitions in state of the cholinergic receptor. J Biol Chem. 1977 Nov 10;252(21):7648–7656. [PubMed] [Google Scholar]
- Weiland G., Georgia B., Wee V. T., Chignell C. F., Taylor P. Ligand interactions with cholinergic receptor-enriched membranes from Torpedo: influence of agonist exposure on receptor properties. Mol Pharmacol. 1976 Nov;12(6):1091–1105. [PubMed] [Google Scholar]
- Weill C. L., McNamee M. G., Karlin A. Affinity-labeling of purified acetylcholine receptor from Torpedo californica. Biochem Biophys Res Commun. 1974 Dec 11;61(3):997–1003. doi: 10.1016/0006-291x(74)90254-x. [DOI] [PubMed] [Google Scholar]
- Witzemann V., Raftery M. A. Selective photoaffinity labeling of acetylcholine receptor using a cholinergic analogue. Biochemistry. 1977 Dec 27;16(26):5862–5868. doi: 10.1021/bi00645a034. [DOI] [PubMed] [Google Scholar]
- Witzemann V., Raftery M. Ligand binding sites and subunit interactions of Torpedo californica acetylcholine receptor. Biochemistry. 1978 Aug 22;17(17):3598–3604. doi: 10.1021/bi00610a028. [DOI] [PubMed] [Google Scholar]