Abstract
Lipid bodies, cytoplasmic inclusions that develop in cells associated with inflammation, are inducible structures that might participate in generating inflammatory eicosanoids. Cis-unsaturated fatty acids (arachidonic and oleic acids) rapidly induced lipid body formation in leukocytes, and this lipid body induction was inhibited by aspirin and nonsteroidal antiinflammatory drugs (NSAIDs). Several findings indicates that the inhibitory effect of aspirin and NSAIDs on lipid body formation was independent of cyclooxygenase (COX) inhibition. First, the non-COX inhibitor, sodium salicylate, was as potent as aspirin in inhibiting lipid body formation elicited by cis-fatty acids. Second, cis-fatty acid-induced lipid body formation was not impaired in macrophages from COX-1 or COX-2 genetically deficient mice. Finally, NSAIDs inhibited arachidonic acid-induced lipid body formation likewise in macrophages from wild-type and COX-1- and COX-2-deficient mice. An enhanced capacity to generate eicosanoids developed after 1 hr concordantly with cis-fatty acid-induced lipid body formation. Arachidonic and oleic acid-induced lipid body numbers correlated with the enhanced levels of leukotrienes B4 and C4 and prostaglandin E2 produced after submaximal calcium ionophore stimulation. Aspirin and NSAIDs inhibited both induced lipid body formation and the enhanced capacity for forming leukotrienes as well as prostaglandins. Our studies indicate that lipid body formation is an inducible early response in leukocytes that correlates with enhanced eicosanoid synthesis. Aspirin and NSAIDs, independent of COX inhibition, inhibit cis-fatty acid-induced lipid body formation in leukocytes and in concert inhibit the enhanced synthesis of leukotrienes and prostaglandins.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson S. B., Leszczynska-Piziak J., Haines K., Reibman J. Non-steroidal anti-inflammatory drugs: effects on a GTP binding protein within the neutrophil plasma membrane. Biochem Pharmacol. 1991 Jun 1;41(11):1567–1573. doi: 10.1016/0006-2952(91)90155-x. [DOI] [PubMed] [Google Scholar]
- Abramson S., Korchak H., Ludewig R., Edelson H., Haines K., Levin R. I., Herman R., Rider L., Kimmel S., Weissmann G. Modes of action of aspirin-like drugs. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7227–7231. doi: 10.1073/pnas.82.21.7227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauldry S. A., Wykle R. L., Bass D. A. Phospholipase A2 activation in human neutrophils. Differential actions of diacylglycerols and alkylacylglycerols in priming cells for stimulation by N-formyl-Met-Leu-Phe. J Biol Chem. 1988 Nov 15;263(32):16787–16795. [PubMed] [Google Scholar]
- Bozza P. T., Payne J. L., Goulet J. L., Weller P. F. Mechanisms of platelet-activating factor-induced lipid body formation: requisite roles for 5-lipoxygenase and de novo protein synthesis in the compartmentalization of neutrophil lipids. J Exp Med. 1996 Apr 1;183(4):1515–1525. doi: 10.1084/jem.183.4.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cerletti C. Interaction of non-steroidal anti-inflammatory drugs on platelet cyclo-oxygenase and lipoxygenase activity. Int J Tissue React. 1985;7(4):309–312. [PubMed] [Google Scholar]
- Cerletti C., Livio M., Doni M. G., De Gaetano G. Salicylate fails to prevent the inhibitory effect of 5,8,11,14-eicosatetraynoic acid on human platelet cyclo-oxygenase and lipoxygenase activities. Biochim Biophys Acta. 1983 Aug 23;759(1-2):125–127. doi: 10.1016/0304-4165(83)90197-6. [DOI] [PubMed] [Google Scholar]
- Coimbra A., Lopes-Vaz A. The presence of lipid droplets and the absence of stable sudanophilia in osmium-fixed human leukocytes. J Histochem Cytochem. 1971 Sep;19(9):551–557. doi: 10.1177/19.9.551. [DOI] [PubMed] [Google Scholar]
- Copeland R. A., Williams J. M., Giannaras J., Nurnberg S., Covington M., Pinto D., Pick S., Trzaskos J. M. Mechanism of selective inhibition of the inducible isoform of prostaglandin G/H synthase. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11202–11206. doi: 10.1073/pnas.91.23.11202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dvorak A. M., Morgan E., Schleimer R. P., Ryeom S. W., Lichtenstein L. M., Weller P. F. Ultrastructural immunogold localization of prostaglandin endoperoxide synthase (cyclooxygenase) to non-membrane-bound cytoplasmic lipid bodies in human lung mast cells, alveolar macrophages, type II pneumocytes, and neutrophils. J Histochem Cytochem. 1992 Jun;40(6):759–769. doi: 10.1177/40.6.1316915. [DOI] [PubMed] [Google Scholar]
- Dvoràk A. M., Morgan E. S., Tzizik D. M., Weller P. F. Prostaglandin endoperoxide synthase (cyclooxygenase): ultrastructural localization to nonmembrane-bound cytoplasmic lipid bodies in human eosinophils and 3T3 fibroblasts. Int Arch Allergy Immunol. 1994 Nov;105(3):245–250. doi: 10.1159/000236764. [DOI] [PubMed] [Google Scholar]
- Futaki N., Takahashi S., Yokoyama M., Arai I., Higuchi S., Otomo S. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins. 1994 Jan;47(1):55–59. doi: 10.1016/0090-6980(94)90074-4. [DOI] [PubMed] [Google Scholar]
- Glaser K. B., Asmis R., Dennis E. A. Bacterial lipopolysaccharide priming of P388D1 macrophage-like cells for enhanced arachidonic acid metabolism. Platelet-activating factor receptor activation and regulation of phospholipase A2. J Biol Chem. 1990 May 25;265(15):8658–8664. [PubMed] [Google Scholar]
- Haines K. A., Giedd K. N., Rich A. M., Korchak H. M., Weissmann G. The leukotriene B4 paradox: neutrophils can, but will not, respond to ligand-receptor interactions by forming leukotriene B4 or its omega-metabolites. Biochem J. 1987 Jan 1;241(1):55–62. doi: 10.1042/bj2410055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kujubu D. A., Herschman H. R. Dexamethasone inhibits mitogen induction of the TIS10 prostaglandin synthase/cyclooxygenase gene. J Biol Chem. 1992 Apr 25;267(12):7991–7994. [PubMed] [Google Scholar]
- Langenbach R., Morham S. G., Tiano H. F., Loftin C. D., Ghanayem B. I., Chulada P. C., Mahler J. F., Lee C. A., Goulding E. H., Kluckman K. D. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell. 1995 Nov 3;83(3):483–492. doi: 10.1016/0092-8674(95)90126-4. [DOI] [PubMed] [Google Scholar]
- Lee S. H., Soyoola E., Chanmugam P., Hart S., Sun W., Zhong H., Liou S., Simmons D., Hwang D. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem. 1992 Dec 25;267(36):25934–25938. [PubMed] [Google Scholar]
- Liles W. C., Meier K. E., Henderson W. R. Phorbol myristate acetate and the calcium ionophore A23187 synergistically induce release of LTB4 by human neutrophils: involvement of protein kinase C activation in regulation of the 5-lipoxygenase pathway. J Immunol. 1987 May 15;138(10):3396–3402. [PubMed] [Google Scholar]
- Morham S. G., Langenbach R., Loftin C. D., Tiano H. F., Vouloumanos N., Jennette J. C., Mahler J. F., Kluckman K. D., Ledford A., Lee C. A. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell. 1995 Nov 3;83(3):473–482. doi: 10.1016/0092-8674(95)90125-6. [DOI] [PubMed] [Google Scholar]
- O'Sullivan M. G., Chilton F. H., Huggins E. M., Jr, McCall C. E. Lipopolysaccharide priming of alveolar macrophages for enhanced synthesis of prostanoids involves induction of a novel prostaglandin H synthase. J Biol Chem. 1992 Jul 25;267(21):14547–14550. [PubMed] [Google Scholar]
- Patrignani P., Filabozzi P., Patrono C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest. 1982 Jun;69(6):1366–1372. doi: 10.1172/JCI110576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Punnonen K., Uotila P. The effect of aspirin on the metabolism of exogenous arachidonic acid in human polymorphonuclear leukocytes. Prostaglandins Leukot Med. 1984 Aug;15(2):177–185. doi: 10.1016/0262-1746(84)90175-6. [DOI] [PubMed] [Google Scholar]
- Raulf M., König W. Modulation of leukotriene release from human polymorphonuclear leucocytes by PMA and arachidonic acid. Immunology. 1988 May;64(1):51–59. [PMC free article] [PubMed] [Google Scholar]
- Reddy S. T., Herschman H. R. Ligand-induced prostaglandin synthesis requires expression of the TIS10/PGS-2 prostaglandin synthase gene in murine fibroblasts and macrophages. J Biol Chem. 1994 Jun 3;269(22):15473–15480. [PubMed] [Google Scholar]
- Robinson J. M., Karnovsky M. L., Karnovsky M. J. Glycogen accumulation in polymorphonuclear leukocytes, and other intracellular alterations that occur during inflammation. J Cell Biol. 1982 Dec;95(3):933–942. doi: 10.1083/jcb.95.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth G. J., Calverley D. C. Aspirin, platelets, and thrombosis: theory and practice. Blood. 1994 Feb 15;83(4):885–898. [PubMed] [Google Scholar]
- Roth G. J., Machuga E. T., Ozols J. Isolation and covalent structure of the aspirin-modified, active-site region of prostaglandin synthetase. Biochemistry. 1983 Sep 27;22(20):4672–4675. doi: 10.1021/bi00289a010. [DOI] [PubMed] [Google Scholar]
- Schlesinger P. A., Stillman M. T., Peterson L. Polyarthritis with birefringent lipid within synovial fluid macrophages: case report and ultrastructural study. Arthritis Rheum. 1982 Nov;25(11):1365–1368. doi: 10.1002/art.1780251114. [DOI] [PubMed] [Google Scholar]
- Smith W. L., Meade E. A., DeWitt D. L. Pharmacology of prostaglandin endoperoxide synthase isozymes-1 and -2. Ann N Y Acad Sci. 1994 Apr 18;714:136–142. doi: 10.1111/j.1749-6632.1994.tb12037.x. [DOI] [PubMed] [Google Scholar]
- Triggiani M., Oriente A., Seeds M. C., Bass D. A., Marone G., Chilton F. H. Migration of human inflammatory cells into the lung results in the remodeling of arachidonic acid into a triglyceride pool. J Exp Med. 1995 Nov 1;182(5):1181–1190. doi: 10.1084/jem.182.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
- Vane J. Towards a better aspirin. Nature. 1994 Jan 20;367(6460):215–216. doi: 10.1038/367215a0. [DOI] [PubMed] [Google Scholar]
- Villanueva M., Heckenberger R., Strobach H., Palmér M., Schrör K. Equipotent inhibition by R(-)-, S(+)- and racemic ibuprofen of human polymorphonuclear cell function in vitro. Br J Clin Pharmacol. 1993 Mar;35(3):235–242. doi: 10.1111/j.1365-2125.1993.tb05690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein J. Synovial fluid leukocytosis associated with intracellular lipid inclusions. Arch Intern Med. 1980 Apr;140(4):560–561. [PubMed] [Google Scholar]
- Weissmann G. Aspirin. Sci Am. 1991 Jan;264(1):84–90. doi: 10.1038/scientificamerican0191-84. [DOI] [PubMed] [Google Scholar]
- Weller P. F., Ackerman S. J., Nicholson-Weller A., Dvorak A. M. Cytoplasmic lipid bodies of human neutrophilic leukocytes. Am J Pathol. 1989 Nov;135(5):947–959. [PMC free article] [PubMed] [Google Scholar]
- Weller P. F., Monahan-Earley R. A., Dvorak H. F., Dvorak A. M. Cytoplasmic lipid bodies of human eosinophils. Subcellular isolation and analysis of arachidonate incorporation. Am J Pathol. 1991 Jan;138(1):141–148. [PMC free article] [PubMed] [Google Scholar]
- Weller P. F., Ryeom S. W., Picard S. T., Ackerman S. J., Dvorak A. M. Cytoplasmic lipid bodies of neutrophils: formation induced by cis-unsaturated fatty acids and mediated by protein kinase C. J Cell Biol. 1991 Apr;113(1):137–146. doi: 10.1083/jcb.113.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zurier R. B., Quagliata F. Effect of prostaglandin E 1 on adjuvant arthritis. Nature. 1971 Dec 3;234(5327):304–305. doi: 10.1038/234304a0. [DOI] [PubMed] [Google Scholar]