Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jan;76(1):200–203. doi: 10.1073/pnas.76.1.200

Helical repeat of DNA in solution.

J C Wang
PMCID: PMC382905  PMID: 284332

Abstract

The helical repeat of DNA in solution has been measured directly by analyzing the gel electrophoretic patterns of pairs of covalently closed DNAs with length differences between 1 and 58 base pairs, out of a total length of about 4350 base pairs per DNA molecule. The method is based on the observation that for a covalently closed DNA of a fixed size of n base pairs (n of the order of several thousand), under appropriate conditions, two topological isomers (topoisomers) differing by 1 in their linking numbers are well resolved by gel electrophoresis. If the size of the DNA is increased to n + x base pairs, unless x is an integral multiple of the helical repeat h, the bands of the topoisomers with n + x base pairs per molecule are all shifted relative to the bands of the topoisomers with n base pairs per molecule. The magnitude of the shift is directly related to the nonintegral residual of x/n. Analysis of the set with x ranging from 1 to 58 gives the DNA helix repeat in solution as 10.4 base pairs per turn under physiological conditions, with an estimated probable error of +/- 0.1. This result strongly supports the double helix structure of DNA and rejects the side-by-side model of Rodley et al. [Rodley, G.A., Scobie, R.S., Bates, R.H. T & Lewitt, R.M. (1976) Proc. Natl. Acad. Sci. USA 73, 2959-2963]. The helical repeat of DNA measured in solution is significantly different from the value 10.0 base pairs per turn for the B form fiber structure.

Full text

PDF
200

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bram S. The secondary structure of DNA in solution and in nucleohistone. J Mol Biol. 1971 May 28;58(1):277–288. doi: 10.1016/0022-2836(71)90246-4. [DOI] [PubMed] [Google Scholar]
  2. Crick F. H. Linking numbers and nucleosomes. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2639–2643. doi: 10.1073/pnas.73.8.2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Depew D. E., Wang J. C. Conformational fluctuations of DNA helix. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4275–4279. doi: 10.1073/pnas.72.11.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Finch J. T., Lutter L. C., Rhodes D., Brown R. S., Rushton B., Levitt M., Klug A. Structure of nucleosome core particles of chromatin. Nature. 1977 Sep 1;269(5623):29–36. doi: 10.1038/269029a0. [DOI] [PubMed] [Google Scholar]
  5. Fuller F. B. The writhing number of a space curve. Proc Natl Acad Sci U S A. 1971 Apr;68(4):815–819. doi: 10.1073/pnas.68.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Levitt M. How many base-pairs per turn does DNA have in solution and in chromatin? Some theoretical calculations. Proc Natl Acad Sci U S A. 1978 Feb;75(2):640–644. doi: 10.1073/pnas.75.2.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rodley G. A., Scobie R. S., Bates R. H., Lewitt R. M. A possible conformation for double-stranded polynucleotides. Proc Natl Acad Sci U S A. 1976 Sep;73(9):2959–2963. doi: 10.1073/pnas.73.9.2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Tunis-Schneider M. J., Maestre M. F. Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films--a preliminary study. J Mol Biol. 1970 Sep 28;52(3):521–541. doi: 10.1016/0022-2836(70)90417-1. [DOI] [PubMed] [Google Scholar]
  9. Vinograd J., Lebowitz J. Physical and topological properties of circular DNA. J Gen Physiol. 1966 Jul;49(6):103–125. doi: 10.1085/jgp.49.6.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
  11. Wang J. C. Variation of the average rotation angle of the DNA helix and the superhelical turns of covalently closed cyclic lambda DNA. J Mol Biol. 1969 Jul 14;43(1):25–39. doi: 10.1016/0022-2836(69)90076-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES