Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 1;93(20):11115–11120. doi: 10.1073/pnas.93.20.11115

Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5' noncoding region: identification by automated liquid chromatography-tandem mass spectrometry.

L B Blyn 1, K M Swiderek 1, O Richards 1, D C Stahl 1, B L Semler 1, E Ehrenfeld 1
PMCID: PMC38293  PMID: 8855318

Abstract

The 5' noncoding region of poliovirus RNA contains an internal ribosome entry site (IRES) for cap-independent initiation of translation. Utilization of the IRES requires the participation of one or more cellular proteins that mediate events in the translation initiation reaction, but whose biochemical roles have not been defined. In this report, we identify a cellular RNA binding protein isolated from the ribosomal salt wash of uninfected HeLa cells that specifically binds to stem-loop IV, a domain located in the central part of the poliovirus IRES. The protein was isolated by specific RNA affinity chromatography, and 55% of its sequence was determined by automated liquid chromatography-tandem mass spectrometry. The sequence obtained matched that of poly(rC) binding protein 2 (PCBP2), previously identified as an RNA binding protein from human cells. PCBP2, as well as a related protein, PCBP1, was over-expressed in Escherichia coli after cloning the cDNAs into an expression plasmid to produce a histidine-tagged fusion protein. Specific interaction between recombinant PCBP2 and poliovirus stem-loop IV was demonstrated by RNA mobility shift analysis. The closely related PCBP1 showed no stable interaction with the RNA. Stem-loop IV RNA containing a three nucleotide insertion that abrogates translation activity and virus viability was unable to bind PCBP2.

Full text

PDF
11115

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aasheim H. C., Loukianova T., Deggerdal A., Smeland E. B. Tissue specific expression and cDNA structure of a human transcript encoding a nucleic acid binding [oligo(dC)] protein related to the pre-mRNA binding protein K. Nucleic Acids Res. 1994 Mar 25;22(6):959–964. doi: 10.1093/nar/22.6.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ali N., Siddiqui A. Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J Virol. 1995 Oct;69(10):6367–6375. doi: 10.1128/jvi.69.10.6367-6375.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black A. C., Luo J., Watanabe C., Chun S., Bakker A., Fraser J. K., Morgan J. P., Rosenblatt J. D. Polypyrimidine tract-binding protein and heterogeneous nuclear ribonucleoprotein A1 bind to human T-cell leukemia virus type 2 RNA regulatory elements. J Virol. 1995 Nov;69(11):6852–6858. doi: 10.1128/jvi.69.11.6852-6858.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blyn L. B., Chen R., Semler B. L., Ehrenfeld E. Host cell proteins binding to domain IV of the 5' noncoding region of poliovirus RNA. J Virol. 1995 Jul;69(7):4381–4389. doi: 10.1128/jvi.69.7.4381-4389.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borman A. M., Deliat F. G., Kean K. M. Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. EMBO J. 1994 Jul 1;13(13):3149–3157. doi: 10.1002/j.1460-2075.1994.tb06613.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borman A., Howell M. T., Patton J. G., Jackson R. J. The involvement of a spliceosome component in internal initiation of human rhinovirus RNA translation. J Gen Virol. 1993 Sep;74(Pt 9):1775–1788. doi: 10.1099/0022-1317-74-9-1775. [DOI] [PubMed] [Google Scholar]
  7. Borovjagin A. V., Evstafieva A. G., Ugarova TYu, Shatsky I. N. A factor that specifically binds to the 5'-untranslated region of encephalomyocarditis virus RNA. FEBS Lett. 1990 Feb 26;261(2):237–240. doi: 10.1016/0014-5793(90)80561-v. [DOI] [PubMed] [Google Scholar]
  8. Davis M. T., Stahl D. C., Hefta S. A., Lee T. D. A microscale electrospray interface for on-line, capillary liquid chromatography/tandem mass spectrometry of complex peptide mixtures. Anal Chem. 1995 Dec 15;67(24):4549–4556. doi: 10.1021/ac00120a019. [DOI] [PubMed] [Google Scholar]
  9. Dildine S. L., Semler B. L. Conservation of RNA-protein interactions among picornaviruses. J Virol. 1992 Jul;66(7):4364–4376. doi: 10.1128/jvi.66.7.4364-4376.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fahnestock S. R., Nomura M. Activity of ribosomes containing 5S RNA with a chemically modified 3'-terminus. Proc Natl Acad Sci U S A. 1972 Feb;69(2):363–365. doi: 10.1073/pnas.69.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haller A. A., Semler B. L. Stem-loop structure synergy in binding cellular proteins to the 5' noncoding region of poliovirus RNA. Virology. 1995 Feb 1;206(2):923–934. doi: 10.1006/viro.1995.1015. [DOI] [PubMed] [Google Scholar]
  12. Hellen C. U., Pestova T. V., Litterst M., Wimmer E. The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5' nontranslated region. J Virol. 1994 Feb;68(2):941–950. doi: 10.1128/jvi.68.2.941-950.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hellen C. U., Witherell G. W., Schmid M., Shin S. H., Pestova T. V., Gil A., Wimmer E. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7642–7646. doi: 10.1073/pnas.90.16.7642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hellman U., Wernstedt C., Góez J., Heldin C. H. Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem. 1995 Jan 1;224(1):451–455. doi: 10.1006/abio.1995.1070. [DOI] [PubMed] [Google Scholar]
  15. Jackson R. J., Hunt S. L., Gibbs C. L., Kaminski A. Internal initiation of translation of picornavirus RNAs. Mol Biol Rep. 1994 May;19(3):147–159. doi: 10.1007/BF00986957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jang S. K., Wimmer E. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev. 1990 Sep;4(9):1560–1572. doi: 10.1101/gad.4.9.1560. [DOI] [PubMed] [Google Scholar]
  17. Kaminski A., Hunt S. L., Patton J. G., Jackson R. J. Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA. 1995 Nov;1(9):924–938. [PMC free article] [PubMed] [Google Scholar]
  18. Leffers H., Dejgaard K., Celis J. E. Characterisation of two major cellular poly(rC)-binding human proteins, each containing three K-homologous (KH) domains. Eur J Biochem. 1995 Jun 1;230(2):447–453. [PubMed] [Google Scholar]
  19. Luban J., Goff S. P. Binding of human immunodeficiency virus type 1 (HIV-1) RNA to recombinant HIV-1 gag polyprotein. J Virol. 1991 Jun;65(6):3203–3212. doi: 10.1128/jvi.65.6.3203-3212.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Meerovitch K., Pelletier J., Sonenberg N. A cellular protein that binds to the 5'-noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Dev. 1989 Jul;3(7):1026–1034. doi: 10.1101/gad.3.7.1026. [DOI] [PubMed] [Google Scholar]
  21. Meerovitch K., Svitkin Y. V., Lee H. S., Lejbkowicz F., Kenan D. J., Chan E. K., Agol V. I., Keene J. D., Sonenberg N. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol. 1993 Jul;67(7):3798–3807. doi: 10.1128/jvi.67.7.3798-3807.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Metspalu A., Saarma M., Villems R., Ustav M., Lind A. Interaction of 5-S RNA, 5.8-S RNA and tRNA with rat-liver ribosomal proteins. Eur J Biochem. 1978 Nov 2;91(1):73–81. doi: 10.1111/j.1432-1033.1978.tb20938.x. [DOI] [PubMed] [Google Scholar]
  23. Patterson S. D., Aebersold R. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis. 1995 Oct;16(10):1791–1814. doi: 10.1002/elps.11501601299. [DOI] [PubMed] [Google Scholar]
  24. Patton J. G., Mayer S. A., Tempst P., Nadal-Ginard B. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing. Genes Dev. 1991 Jul;5(7):1237–1251. doi: 10.1101/gad.5.7.1237. [DOI] [PubMed] [Google Scholar]
  25. Simoes E. A., Sarnow P. An RNA hairpin at the extreme 5' end of the poliovirus RNA genome modulates viral translation in human cells. J Virol. 1991 Feb;65(2):913–921. doi: 10.1128/jvi.65.2.913-921.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stefano J. E. Purified lupus antigen La recognizes an oligouridylate stretch common to the 3' termini of RNA polymerase III transcripts. Cell. 1984 Jan;36(1):145–154. doi: 10.1016/0092-8674(84)90083-7. [DOI] [PubMed] [Google Scholar]
  27. Trono D., Andino R., Baltimore D. An RNA sequence of hundreds of nucleotides at the 5' end of poliovirus RNA is involved in allowing viral protein synthesis. J Virol. 1988 Jul;62(7):2291–2299. doi: 10.1128/jvi.62.7.2291-2299.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature. 1996 Feb 1;379(6564):466–469. doi: 10.1038/379466a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES