Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jan;76(1):353–357. doi: 10.1073/pnas.76.1.353

Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells.

P A Jones, T Scott-Burden, W Gevers
PMCID: PMC382937  PMID: 284351

Abstract

Smooth muscle cells from rat heart secreted extracellular matrix components at high rates for many generations in culture. The matrix proteins remained anchored to the culture dish and were characterized after removal of cellular material with sodium dodecyl sulfate. Sequential enzyme digestion demonstrated the presence of at least three components, including glycoprotein(s), elastin, and collagen. Prolonged extraction of the matrix with detergent under reducing conditions solubilized a fucosylated glycoprotein having an apparent molecular weight of 250,000 and two other proteins with molecular weights of 72,000 and 45,000, respectively. Sublines derived from discrete colonies of smooth muscle cells synthesized all of the matrix components, and the proportion of collagen secreted by some sublines increased with time in culture. The biosynthesis of a mixed extracellular matrix and the relationships among the component proteins were therefore studied in one system producing milligram quantities of material.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benditt E. P. Implications of the monoclonal character of human atherosclerotic plaques. Am J Pathol. 1977 Mar;86(3):693–702. [PMC free article] [PubMed] [Google Scholar]
  2. Birdwell C. R., Gospodarowicz D., Nicolson G. L. Identification, localization, and role of fibronectin in cultured bovine endothelial cells. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3273–3277. doi: 10.1073/pnas.75.7.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blondel B., Roijen I., Cheneval J. P. Heart cells in culture: a simple method for increasing the proportion of myoblasts. Experientia. 1971 Mar 15;27(3):356–358. doi: 10.1007/BF02138197. [DOI] [PubMed] [Google Scholar]
  4. Bressan G. M., Prockop D. J. Synthesis of elastin in aortas from chick embryos. Conversion of newly secreted elastin to cross-linked elastin without apparent proteolysis of the molecule. Biochemistry. 1977 Apr 5;16(7):1406–1412. doi: 10.1021/bi00626a026. [DOI] [PubMed] [Google Scholar]
  5. Chen L. B., Murray A., Segal R. A., Bushnell A., Walsh M. L. Studies on intercellular LETS glycoprotein matrices. Cell. 1978 Jun;14(2):377–391. doi: 10.1016/0092-8674(78)90123-x. [DOI] [PubMed] [Google Scholar]
  6. Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
  7. Evans C. A., Peterkofsky B. Ascorbate-independent proline hydroxylation resulting from viral transformation of Balb 3T3 cells and unaffected by dibutyryl cAMP treatment. J Cell Physiol. 1976 Nov;89(3):355–367. doi: 10.1002/jcp.1040890302. [DOI] [PubMed] [Google Scholar]
  8. Foster J. A., Mecham R. P., Rich C. B., Cronin M. F., Levine A., Imberman M., Salcedo L. L. Proelastin. Synthesis in cultured smooth muscle cells. J Biol Chem. 1978 Apr 25;253(8):2797–2803. [PubMed] [Google Scholar]
  9. Gimbrone M. A., Jr, Cotran R. S. Human vascular smooth muscle in culture. Growth and ultrastructure. Lab Invest. 1975 Jul;33(1):16–27. [PubMed] [Google Scholar]
  10. Harris E. D., Jr, Krane S. M. Collagenases (second of three parts). N Engl J Med. 1974 Sep 19;291(12):605–609. doi: 10.1056/NEJM197409192911205. [DOI] [PubMed] [Google Scholar]
  11. Hedman K., Vaheri A., Wartiovaara J. External fibronectin of cultured human fibroblasts is predominantly a matrix protein. J Cell Biol. 1978 Mar;76(3):748–760. doi: 10.1083/jcb.76.3.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Mayne R., Vail M. S., Miller E. J. Characterization of the collagen chains synthesized by cultured smooth muscle cells derived from rhesus monkey thoracic aorta. Biochemistry. 1978 Feb 7;17(3):446–452. doi: 10.1021/bi00596a011. [DOI] [PubMed] [Google Scholar]
  14. Miller E. J. Biochemical characteristics and biological significance of the genetically-distinct collagens. Mol Cell Biochem. 1976 Dec 10;13(3):165–192. doi: 10.1007/BF01731779. [DOI] [PubMed] [Google Scholar]
  15. Miller E. J., Martin G. R., Mecca C. E., Piez K. A. The biosynthesis of elastin cross-links. The effect of copper deficiency and a lathyrogen. J Biol Chem. 1965 Sep;240(9):3623–3627. [PubMed] [Google Scholar]
  16. Muir L. W., Bornstein P., Ross R. A presumptive subunit of elastic fiber microfibrils secreted by arterial smooth-muscle cells in culture. Eur J Biochem. 1976 Apr 15;64(1):105–114. doi: 10.1111/j.1432-1033.1976.tb10278.x. [DOI] [PubMed] [Google Scholar]
  17. Murphy L., Harsch M., Mori T., Rosenbloom J. Identification of a soluble intermediate during synthesis of elastin by embryonic chick aortae. FEBS Lett. 1972 Mar 15;21(2):113–117. doi: 10.1016/0014-5793(72)80116-9. [DOI] [PubMed] [Google Scholar]
  18. Narayanan A. S., Sandberg L. B., Ross R., Layman D. L. The smooth muscle cell. III. Elastin synthesis in arterial smooth muscle cell culture. J Cell Biol. 1976 Mar;68(3):411–419. doi: 10.1083/jcb.68.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pearlstein E. Plasma membrane glycoprotein which mediates adhesion of fibroblasts to collagen. Nature. 1976 Aug 5;262(5568):497–500. doi: 10.1038/262497a0. [DOI] [PubMed] [Google Scholar]
  20. Peterkofsky B., Prather W. B. Increased collagen synthesis in Kirsten sarcoma virus-transformed BALB 3T3 cells grown in the presence of dibutyryl cyclic AMP. Cell. 1974 Nov;3(3):291–299. doi: 10.1016/0092-8674(74)90144-5. [DOI] [PubMed] [Google Scholar]
  21. Porzio M. A., Pearson A. M. Improved resolution of myofibrillar proteins with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochim Biophys Acta. 1977 Jan 25;490(1):27–34. doi: 10.1016/0005-2795(77)90102-7. [DOI] [PubMed] [Google Scholar]
  22. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rucker R. B., Tinker D. Structure and metabolism of arterial elastin. Int Rev Exp Pathol. 1977;17:1–47. [PubMed] [Google Scholar]
  24. Schwarz R. I., Bissell M. J. Dependence of the differentiated state on the cellular environment: modulation of collagen synthesis in tendon cells. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4453–4457. doi: 10.1073/pnas.74.10.4453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sear C. H., Grant M. E., Jackson D. S. Biosynthesis and release of glycoproteins by human skin fibroblasts in culture. Biochem J. 1977 Oct 15;168(1):91–103. doi: 10.1042/bj1680091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES