Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jan;76(1):473–475. doi: 10.1073/pnas.76.1.473

Incorporation of glucocerebrosidase into Gaucher's disease monocytes in vitro.

G L Dale, W Kuhl, E Beutler
PMCID: PMC382963  PMID: 284362

Abstract

Several carriers were evaluated for use in the delivery of exogenous glucocerebrosidase to monocytes from Gaucher's disease patients. Only gamma globulin-coated, resealed erythrocytes proved to be an effective vehicle for enzyme delivery. Glucocerebrosidase added in this manner normalized intracellular enzyme levels for at least 18 hr. In this model system for the study of enzyme replacement therapy, soluble enzyme, enzyme in uncoated resealed erythrocytes, and enzyme incorporated into liposomes were ineffective.

Full text

PDF
473

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRADY R. O., KANFER J. N., SHAPIRO D. METABOLISM OF GLUCOCEREBROSIDES. II. EVIDENCE OF AN ENZYMATIC DEFICIENCY IN GAUCHER'S DISEASE. Biochem Biophys Res Commun. 1965 Jan 18;18:221–225. doi: 10.1016/0006-291x(65)90743-6. [DOI] [PubMed] [Google Scholar]
  2. Belchetz P. E., Crawley J. C., Braidman I. P., Gregoriadis G. Treatment of Gaucher's disease with liposome-entrapped glucocerebroside: beta-glucosidase. Lancet. 1977 Jul 16;2(8029):116–117. doi: 10.1016/s0140-6736(77)90123-4. [DOI] [PubMed] [Google Scholar]
  3. Beutler E., Dale G. L., Guinto D. E., Kuhl W. Enzyme replacement therapy in Gaucher's disease: preliminary clinical trial of a new enzyme preparation. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4620–4623. doi: 10.1073/pnas.74.10.4620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brady R. O., Pentchev P. G., Gal A. E., Hibbert S. R., Dekaban A. S. Replacement therapy for inherited enzyme deficiency. Use of purified glucocerebrosidase in Gaucher's disease. N Engl J Med. 1974 Nov 7;291(19):989–993. doi: 10.1056/NEJM197411072911901. [DOI] [PubMed] [Google Scholar]
  5. Burns G. F., Cawley J. C., Flemans R. J., Higgy K. E., Worman C. P., Barker C. R., Roberts B. E., Hayhoe F. G. Surface marker and other characteristics of Gaucher's cells. J Clin Pathol. 1977 Oct;30(10):981–988. doi: 10.1136/jcp.30.10.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DEDUVE C. FROM CYTASES TO LYSOSOMES. Fed Proc. 1964 Sep-Oct;23:1045–1049. [PubMed] [Google Scholar]
  7. Dale G. L., Beutler E. Enzyme replacement therapy in Gaucher's disease: a rapid, high-yield method for purification of glucocerebrosidase. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4672–4674. doi: 10.1073/pnas.73.12.4672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dale G. L., Villacorte D. G., Beutler E. High-yield entrapment of proteins into erythrocytes. Biochem Med. 1977 Oct;18(2):220–225. doi: 10.1016/0006-2944(77)90093-x. [DOI] [PubMed] [Google Scholar]
  9. Deloach J., Peters S., Pinkard O., Glew R., Ihler G. Effect of glutaraldehyde treatment on enzyme-loaded erythrocytes. Biochim Biophys Acta. 1977 Feb 28;496(2):507–515. doi: 10.1016/0304-4165(77)90332-4. [DOI] [PubMed] [Google Scholar]
  10. Desnick R. J., Thorpe S. R., Fiddler M. B. Toward enzyme therapy for lysosomal storage diseases. Physiol Rev. 1976 Jan;56(1):57–99. doi: 10.1152/physrev.1976.56.1.57. [DOI] [PubMed] [Google Scholar]
  11. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  12. Furbish F. S., Steer C. J., Barranger J. A., Jones E. A., Brady R. O. The uptake of native and desialylated glucocerebrosidase by rat hepatocytes and Kupffer cells. Biochem Biophys Res Commun. 1978 Apr 14;81(3):1047–1053. doi: 10.1016/0006-291x(78)91456-0. [DOI] [PubMed] [Google Scholar]
  13. Gregoriadis G., Buckland R. A. Enzyme-containing liposomes alleviate a model for storage disease. Nature. 1973 Jul 20;244(5412):170–172. doi: 10.1038/244170a0. [DOI] [PubMed] [Google Scholar]
  14. Gregoriadis G. Enzyme entrapment in liposomes. Methods Enzymol. 1976;44:218–227. doi: 10.1016/s0076-6879(76)44019-3. [DOI] [PubMed] [Google Scholar]
  15. Gregoriadis G. The carrier potential of liposomes in biology and medicine (second of two parts). N Engl J Med. 1976 Sep 30;295(14):765–770. doi: 10.1056/NEJM197609302951406. [DOI] [PubMed] [Google Scholar]
  16. Perper R. J., Zee T. W., Mickelson M. M. Purification of lymphocytes and platelets by gradient centrifugation. J Lab Clin Med. 1968 Nov;72(5):842–848. [PubMed] [Google Scholar]
  17. Thorpe S. R., Fiddler M. B., Desnick R. J. Enzyme therapy. V. In vivo fate of erythrocyte-entrapped beta-glucuronidase in beta-glucuronidase-deficient mice. Pediatr Res. 1975 Dec;9(12):918–923. doi: 10.1203/00006450-197512000-00011. [DOI] [PubMed] [Google Scholar]
  18. Wang C-C, Touster O. Turnover studies on proteins of rat liver lysosomes. J Biol Chem. 1975 Jul 10;250(13):4896–4902. [PubMed] [Google Scholar]
  19. Yatziv S., Epstein L. B., Epstein C. J. Monocyte-derived macrophages: an in vitro system for studying hereditary lysosomal storage diseases. Pediatr Res. 1978 Sep;12(9):939–944. doi: 10.1203/00006450-197809000-00011. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES