Abstract
Epithelial cells dissociated from midpregnant BALB/c mouse mammary glands were cultured for as long as 20 days as confluent monolayers on floating collagen gels. Detached gels bearing monolayers were placed in lucite Ussing chàmbers for measurement of transepithelial potential difference (PD), short-circuit current (Isc), resistance (R), and unidirectional fluxes of Na+ and Cl- during short-circuit current conditions (PD = 0). With Hanks' solution bathing both sides of cultures maintained with insulin and cortisol, PD = -12.8 mV (serosal side ground), Isc = 24.6 μA/cm2, and R = 507 ω·cm2. Net absorption of Na+ equaled Isc, and there was no net Cl- transport. PD and Isc were reduced 50% by mucosal addition of 10 μM amiloride and to zero by metabolic inhibition with nitrogen gas or by serosal addition of 0.1 mM ouabain. In similar cultures supplemented with prolactin, PD and Isc increased to -15.8 mV and 48.0 μA/cm2, respectively, and R decreased to 374 ω·cm2. Inhibitor effects were similar to those seen in prolactin-free cultures. Prolactin exposure resulted in a 3-fold increase in net absorption of Na+. Na+ absorption was not equivalent to Isc, and there was little Cl- absorption; therefore, prolactin induced active transport of other, as yet unidentified, ions. These effects of prolactin require at least 3 days to occur and cannot be attributed to the known contamination with neurohypophysial hormones. The prolactin-induced increase in Na+ absorption parallels its Na+-retaining ability in lower vertebrates and could be part of the mechanism that keeps milk Na+ concentration low in intact glands.
Keywords: active Na+ transport, primary cell culture, midpregnant cells, cell differentiation, milk ions
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benos D. J., Simon S. A., Mandel L. J., Cala P. M. Effect of amiloride and some of its analogues of cation transport in isolated frog skin and thin lipid membranes. J Gen Physiol. 1976 Jul;68(1):43–63. doi: 10.1085/jgp.68.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bentley P. J. Amiloride: a potent inhibitor of sodium transport across the toad bladder. J Physiol. 1968 Mar;195(2):317–330. doi: 10.1113/jphysiol.1968.sp008460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bond G. C., Pasley J. N., Koike T. I., Llerena L. Contamination of an ovine prolactin preparation with antidiuretic hormone. J Endocrinol. 1976 Oct;71(1):169–170. doi: 10.1677/joe.0.0710169. [DOI] [PubMed] [Google Scholar]
- Burton R. F. The significance of ionic concentrations in the internal media of animals. Biol Rev Camb Philos Soc. 1973 May;48(2):195–231. doi: 10.1111/j.1469-185x.1973.tb00980.x. [DOI] [PubMed] [Google Scholar]
- Carrasco L., Smith A. E. Sodium ions and the shut-off of host cell protein synthesis by picornaviruses. Nature. 1976 Dec 23;264(5588):807–809. doi: 10.1038/264807a0. [DOI] [PubMed] [Google Scholar]
- Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J. L., Babcock D. F., Lardy H. A. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1978 May;75(5):2234–2238. doi: 10.1073/pnas.75.5.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claude P., Goodenough D. A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. doi: 10.1083/jcb.58.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cone C. D., Jr Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J Theor Biol. 1971 Jan;30(1):151–181. doi: 10.1016/0022-5193(71)90042-7. [DOI] [PubMed] [Google Scholar]
- Emerman J. T., Enami J., Pitelka D. R., Nandi S. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4466–4470. doi: 10.1073/pnas.74.10.4466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emerman J. T., Pitelka D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro. 1977 May;13(5):316–328. doi: 10.1007/BF02616178. [DOI] [PubMed] [Google Scholar]
- Falconer I. R., Forsyth I. A., Wilson B. M., Dils R. Inhibition by low concentrations of ouabain of prolactin-induced lactogenesis in rabbit mammary-gland explants. Biochem J. 1978 Jun 15;172(3):509–516. doi: 10.1042/bj1720509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falconer I. R., Rowe J. M. Effect of prolactin on sodium and potassium concentrations in mammary alveolar tissue. Endocrinology. 1977 Jul;101(1):181–186. doi: 10.1210/endo-101-1-181. [DOI] [PubMed] [Google Scholar]
- Keeler R., Wilson N. Vasopressin contamination as a cause of some apparent renal actions of prolactin. Can J Physiol Pharmacol. 1976 Dec;54(6):887–890. doi: 10.1139/y76-124. [DOI] [PubMed] [Google Scholar]
- Leighton J., Estes L. W., Mansukhani S., Brada Z. A cell line derived from normal dog kidney (MDCK) exhibiting qualities of papillary adenocarcinoma and of renal tubular epithelium. Cancer. 1970 Nov;26(5):1022–1028. doi: 10.1002/1097-0142(197011)26:5<1022::aid-cncr2820260509>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
- Linzell J. L., Peaker M. Intracellular concentrations of sodium, potassium and chloride in the lactating mammary gland and their relation to the secretory mechanism. J Physiol. 1971 Aug;216(3):683–700. doi: 10.1113/jphysiol.1971.sp009547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linzell J. L., Peaker M. Mechanism of milk secretion. Physiol Rev. 1971 Jul;51(3):564–597. doi: 10.1152/physrev.1971.51.3.564. [DOI] [PubMed] [Google Scholar]
- Linzell J. L., Peaker M., Taylor J. C. The effects of prolactin and oxytocin on milk secretion and on the permeability of the mammary epithelium in the rabbit. J Physiol. 1975 Dec;253(2):547–563. doi: 10.1113/jphysiol.1975.sp011206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macknight A. D., Leaf A. Regulation of cellular volume. Physiol Rev. 1977 Jul;57(3):510–573. doi: 10.1152/physrev.1977.57.3.510. [DOI] [PubMed] [Google Scholar]
- Michalopoulos G., Pitot H. C. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp Cell Res. 1975 Aug;94(1):70–78. doi: 10.1016/0014-4827(75)90532-7. [DOI] [PubMed] [Google Scholar]
- Misfeldt D. S., Hamamoto S. T., Pitelka D. R. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1212–1216. doi: 10.1073/pnas.73.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nellans H. N., Schultz S. G. Relations among transepithelial sodium transport, potassium exchange, and cell volume in rabbit ileum. J Gen Physiol. 1976 Oct;68(4):441–463. doi: 10.1085/jgp.68.4.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peaker M. Mechanism of milk secretion: milk composition in relation to potential difference across the mammary epithelium. J Physiol. 1977 Sep;270(2):489–505. doi: 10.1113/jphysiol.1977.sp011964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen O. H. Electrophysiology of mammalian gland cells. Physiol Rev. 1976 Jul;56(3):535–577. doi: 10.1152/physrev.1976.56.3.535. [DOI] [PubMed] [Google Scholar]
- Shen S. S., Hamamoto S. T., Bern H. A., Steinhardt R. A. Alteration of sodium transport in mouse mammary epithelium associated with neoplastic transformation. Cancer Res. 1978 May;38(5):1356–1361. [PubMed] [Google Scholar]
- Simmons N. L. Hormone stimulation of net transepithelial Na transport in cell culture [proceedings]. J Physiol. 1978 Mar;276:28P–29P. [PubMed] [Google Scholar]
- Vorherr H., Vorherr U. F., Solomon S. Contamination of prolactin preparations by antidiuretic hormone and oxytocin. Am J Physiol. 1978 Apr;234(4):F318–F324. doi: 10.1152/ajprenal.1978.234.4.F318. [DOI] [PubMed] [Google Scholar]
- Vreeswijk J. H., de Pont J. J., Bonting S. L. Na-KATPase activity and intracellular ion concentrations in the lactating guinea pig mammary gland. Studies on Na-K activated adenosine triphosphatase, XXXVI. Pflugers Arch. 1975;356(4):347–357. doi: 10.1007/BF00580007. [DOI] [PubMed] [Google Scholar]
- Vreeswijk J. H., de Pont J. J., Bonting S. L. Studies on (Na+-K+)-activated ATPase. XXXII. Occurrence and properties of (Na+-K+)-ATPase in immature, lactating and involuted guinea pig mammary gland. Biochim Biophys Acta. 1973 Dec 13;330(2):173–185. doi: 10.1016/0005-2736(73)90222-8. [DOI] [PubMed] [Google Scholar]
