Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Feb;76(2):620–624. doi: 10.1073/pnas.76.2.620

Effect of benzo[a]pyrene-diolepoxide on infectivity and in vitro translation of phage MS2 RNA.

D Sagher, R G Harvey, W T Hsu, S B Weiss
PMCID: PMC383000  PMID: 284386

Abstract

Previous studies have shown that alkylation of MS2 RNA by certain derivatives of polycyclic aromatic hydrocarbons renders it noninfectious. Since phage RNA serves as a template for translation and transcription, either of these RNA-directed processes, or both, could be responsible in vivo for the inhibition of phage replication by metabolically activated hydrocarbons. The present study correlates the degree of inhibition of MS2 RNA infectivity, at various levels of alkylation by (+/-)-trans, 7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzol[a]pyrene, with the translation efficiency in vitro of the same alkylated RNA for the synthesis of viral synthetase and of maturation and coat proteins. The results indicate that dihydroxyepoxy-tetrahydrobenzo[a]pyrene modification of MS2 RNA impairs its template capacity for the synthesis of phage-specific proteins; this inhibition is insufficient, however, to account for the loss of RNA infectivity at lower molar ratios of alkylation. For the three viral proteins synthesized in vitro, the translation of RNA synthetase is much more sensitive to MS2 RNA modification than either coat or maturation protein synthesis. Our results also indicate that the loss of viral RNA infectivity follows a single-hit inactivation mechanism, whereas several alkylation events in the viral RNA synthetase cistron may be necessary to block translation of this gene product.

Full text

PDF
620

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  2. Capecchi M. R. Cell-free protein synthesis programmed with R17 RNA: identification of two phage proteins. J Mol Biol. 1966 Oct 28;21(1):173–193. doi: 10.1016/0022-2836(66)90086-6. [DOI] [PubMed] [Google Scholar]
  3. Dipple A., Shooter K. V. Chemical modification and biological inactivation of bacteriophage R17 by 7-bromomethylbenz(alpha)anthracenes. Biochim Biophys Acta. 1974 Dec 20;374(3):392–399. doi: 10.1016/0005-2787(74)90260-3. [DOI] [PubMed] [Google Scholar]
  4. Fiers W., Contreras R., Duerinck F., Haegeman G., Iserentant D., Merregaert J., Min Jou W., Molemans F., Raeymaekers A., Van den Berghe A. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature. 1976 Apr 8;260(5551):500–507. doi: 10.1038/260500a0. [DOI] [PubMed] [Google Scholar]
  5. Grunberger D., Weinstein I. B. Modifications of ribonucleic acid by chemical carcinogens. 3. Template activity of polynucleotides modified by N-acetoxy-2-acetylamino-fluorene. J Biol Chem. 1971 Feb 25;246(4):1123–1128. [PubMed] [Google Scholar]
  6. HSU W. T., MOOHR J. W., WEISS S. B. THE INFLUENCE OF POLYCYCLIC AROMATIC HYDROCARBONS ON BACTERIOPHAGE DEVELOPMENT. Proc Natl Acad Sci U S A. 1965 Mar;53:517–524. doi: 10.1073/pnas.53.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hsu W. T., Harvey R. G., Lin E. J., Weiss S. B. A bacteriophage system for screening and study of biologically active polycyclic aromatic hydrocarbons and related compounds. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1378–1382. doi: 10.1073/pnas.74.4.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hsu W. T., Lin E. J., Harvey R. G., Weiss S. B. Mechanism of phage phiX174 DNA inactivation by benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3335–3339. doi: 10.1073/pnas.74.8.3335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hsu W. T., Moohr J. W., Tsai A. Y., Weiss S. B. The influence of polycyclic aromatic hydrocarbons on bacteriophage development. II. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1475–1482. doi: 10.1073/pnas.55.6.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huberman E., Sachs L., Yang S. K., Gelboin V. Identification of mutagenic metabolites of benzo(a)pyrene in mammalian cells. Proc Natl Acad Sci U S A. 1976 Feb;73(2):607–611. doi: 10.1073/pnas.73.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jeffrey A. M., Weinstein I. B., Jennette K. W., Grzeskowiak K., Nakanishi K., Harvey R. G., Autrup H., Harris C. Structures of benzo(a)pyrene--nucleic acid adducts formed in human and bovine bronchial explants. Nature. 1977 Sep 22;269(5626):348–350. doi: 10.1038/269348a0. [DOI] [PubMed] [Google Scholar]
  12. Kapitulnik J., Levin W., Conney A. H., Yagi H., Jerina D. M. Benzo[a]pyrene 7,8-dihydrodiol is more carcinogenic than benzo[a]pyrene in newborn mice. Nature. 1977 Mar 24;266(5600):378–380. doi: 10.1038/266378a0. [DOI] [PubMed] [Google Scholar]
  13. King H. W., Osborne M. R., Beland F. A., Harvey R. G., Brookes P. (+/-)-7alpha,8beta-dihydroxy-9beta,10beta-epoxy-7,8,9,10-tetrahydrobenzo(a)-pyrene is an intermediate in the metabolism and binding to DNA of benzo(a)pyrene. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2679–2681. doi: 10.1073/pnas.73.8.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leffler S., Pulkrabek P., Grunberger D., Weinstein I. B. Template activity of calf thymus DNA modified by a dihydrodiol epoxide derivative of benzo[a]pyrene. Biochemistry. 1977 Jul 12;16(14):3133–3136. doi: 10.1021/bi00633a015. [DOI] [PubMed] [Google Scholar]
  15. Levin W., Wood A. W., Yagi H., Jerina D. M., Conney A. H. (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo (a)pyrene: a potent skin carcinogen when applied topically to mice. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3867–3871. doi: 10.1073/pnas.73.11.3867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lodish H. F. Bacteriophage f2 RNA: control of translation and gene order. Nature. 1968 Oct 26;220(5165):345–350. doi: 10.1038/220345a0. [DOI] [PubMed] [Google Scholar]
  17. Malaveille C., Bartsch H., Grover P. L., Sims P. Mutagenicity of non-K-region diols and diol-epoxides of benz(a)anthracene and benzo(a)pyrene in S. typhimurium TA 100. Biochem Biophys Res Commun. 1975 Sep 16;66(2):693–700. doi: 10.1016/0006-291x(75)90565-3. [DOI] [PubMed] [Google Scholar]
  18. NATHANS D., NOTANI G., SCHWARTZ J. H., ZINDER N. D. Biosynthesis of the coat protein of coliphage f2 by E. coli extracts. Proc Natl Acad Sci U S A. 1962 Aug;48:1424–1431. doi: 10.1073/pnas.48.8.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Newbold R. F., Brookes P. Exceptional mutagenicity of a benzo(a)pyrene diol epoxide in cultured mammalian cells. Nature. 1976 May 6;261(5555):52–54. doi: 10.1038/261052a0. [DOI] [PubMed] [Google Scholar]
  20. Slaga T. J., Viaje A., Bracken W. M., Berry D. L., Fischer S. M., Miller D. R., Leclerc S. M. Skin-tumor-initiating ability of benzo(a)pyrene-7,8-diol-9,10-epoxide (anti) when applied topically in tetrahydrofuran. Cancer Lett. 1977 Jul;3(1-2):23–30. doi: 10.1016/s0304-3835(77)93845-9. [DOI] [PubMed] [Google Scholar]
  21. Spiegelman S., Haruna I., Holland I. B., Beaudreau G., Mills D. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc Natl Acad Sci U S A. 1965 Sep;54(3):919–927. doi: 10.1073/pnas.54.3.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Viñuela E., Salas M., Ochoa S. Translation of the genetic message, iii. Formylmethionine as initiator of proteins programed by polycistronic messenger RNA. Proc Natl Acad Sci U S A. 1967 Mar;57(3):729–734. doi: 10.1073/pnas.57.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weinstein I. B., Jeffrey A. M., Jennette K. W., Blobstein S. H., Harvey R. G., Harris C., Autrup H., Kasai H., Nakanishi K. Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo. Science. 1976 Aug 13;193(4253):592–595. doi: 10.1126/science.959820. [DOI] [PubMed] [Google Scholar]
  24. Wislocki P. G., Wood A. W., Chang R. L., Levin W., Yagi H., Hernandez O., Jerina D. M., Conney A. H. High mutagenicity and toxicity of a diol epoxide derived from benzo(a)pyrene. Biochem Biophys Res Commun. 1976 Feb 9;68(3):1006–1012. doi: 10.1016/0006-291x(76)91246-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES