Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Feb;76(2):705–709. doi: 10.1073/pnas.76.2.705

Contribution of negative cooperativity to the thyrotropin-receptor interaction in normal human thyroid: kinetic evaluation.

C H Powell-Jones, C G Thomas Jr, S N Nayfeh
PMCID: PMC383025  PMID: 218217

Abstract

The kinetics of 125I-labeled thyrotropin (125I-TSH) binding to human thyroid receptors are presented. At pH 6.0, binding was maximal (30--35%) and there was one class of binding sites [Kd = 6.8 X 10(-9) M; binding capacity (Ro) = 57 pmol/mg of protein]. At pH 7.4, Scatchard plots of binding were nonlinear, indicating either a single class of negatively cooperative sites (Kd = 3.7 X 10(-9) M; Ro = 26 pmol/mg of protein) or, alternatively, independent high- (Kd = 5.0 X 10(-10) M; Ro = 3 pmol/mg of protein) and low-affinity (Kd = 1.7 X 10(-8) M; Ro = 26 pmol/mg of protein) binding sites. The role of negative cooperativity was evaluated from the rates of association and dissociation at pH 7.4. The kinetically determined binding constants (Kd = 1.7 X 10(-11) M; Ro = 2 pmol/mg of protein) were more similar to those determined for the high-affinity component than to those predicted from the negative cooperativity model. Dissociation of bound TSH was independent of initial site occupancy over a 40-fold range, corresponding to a 100-fold range of free TSH concentration. The dissociation rate of 125I-TSH was enhanced by unlabeled TSH to a similar degree, irrespective of initial binding site occupancy. Because the negative cooperativity model does not accommodate these data, it is concluded that TSH receptors in human thyroid behave kinetically and at equilibrium as a single class of high-affinity sites up to TSH concentrations well above the physiological range.

Full text

PDF
705

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amir S. M., Carraway T. F., Jr, Kohn L. D., Winand R. J. The binding of thyrotropin to isolated bovine thyroid plasma membranes. J Biol Chem. 1973 Jun 10;248(11):4092–4100. [PubMed] [Google Scholar]
  2. Bashford C. L., Harrison S. J., Radda G. K. The relation between lipid mobility and the specific hormone binding of thyroid membranes. Biochem J. 1975 Feb;146(2):473–479. doi: 10.1042/bj1460473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cuatrecasas P., Hollenberg M. D. Binding of insulin and other hormones to non-receptor materials: saturability, specificity and apparent "negative cooperativity". Biochem Biophys Res Commun. 1975 Jan 6;62(1):31–41. doi: 10.1016/s0006-291x(75)80401-3. [DOI] [PubMed] [Google Scholar]
  4. DeMeyts P., Bainco A. R., Roth J. Site-site interactions among insulin receptors. Characterization of the negative cooperativity. J Biol Chem. 1976 Apr 10;251(7):1877–1888. [PubMed] [Google Scholar]
  5. Donner D. B., Martin D. W., Sonenberg M. Accumulation of a slowly dissociable peptide hormone binding component by isolated target cells. Proc Natl Acad Sci U S A. 1978 Feb;75(2):672–676. doi: 10.1073/pnas.75.2.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dumont J. E. The action of thyrotropin on thyroid metabolism. Vitam Horm. 1971;29:287–412. doi: 10.1016/s0083-6729(08)60051-5. [DOI] [PubMed] [Google Scholar]
  7. Goldfine I. D., Amir S. M., Ingbar S. H., Tucker G. The interaction of radioiodinated thyrotropin with plasma membranes. Evidence for high affinity binding sites in the thyroid. Biochim Biophys Acta. 1976 Sep 21;448(1):45–56. doi: 10.1016/0005-2736(76)90075-4. [DOI] [PubMed] [Google Scholar]
  8. Hammond J. M., Jarett L., Mariz I. K., Daughaday W. H. Heterogeneity of insulin receptors on fat cell membranes. Biochem Biophys Res Commun. 1972 Nov 15;49(4):1122–1128. doi: 10.1016/0006-291x(72)90329-4. [DOI] [PubMed] [Google Scholar]
  9. Harrison L. C., Billington T., East I. J., Nichols R. J., Clark S. The effect of solubilization on the properties of the insulin receptor of human placental membranes. Endocrinology. 1978 May;102(5):1485–1495. doi: 10.1210/endo-102-5-1485. [DOI] [PubMed] [Google Scholar]
  10. Jacobs S., Cuatrecasas P. The mobile receptor hypothesis and "cooperativity" of hormone binding. Application to insulin. Biochim Biophys Acta. 1976 May 21;433(3):482–495. doi: 10.1016/0005-2736(76)90275-3. [DOI] [PubMed] [Google Scholar]
  11. Kahn C. R., Freychet P., Roth J., Neville D. M., Jr Quantitative aspects of the insulin-receptor interaction in liver plasma membranes. J Biol Chem. 1974 Apr 10;249(7):2249–2257. [PubMed] [Google Scholar]
  12. Krupp M. N., Livingston J. N. Insulin binding to solubilized material from fat cell membranes: evidence for two binding species. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2593–2597. doi: 10.1073/pnas.75.6.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Limbird L. E., Meyts P. D., Lefkowitz R. J. Beta-adrenergic receptors: evidence for negative cooperativity. Biochem Biophys Res Commun. 1975 Jun 16;64(4):1160–1168. doi: 10.1016/0006-291x(75)90815-3. [DOI] [PubMed] [Google Scholar]
  15. Lissitzky S., Fayet G., Verrier B. Thyrotropin-receptor interaction and cyclic AMP-mediated effects in thyroid cells. Adv Cyclic Nucleotide Res. 1975;5:133–152. [PubMed] [Google Scholar]
  16. Manley S. W., Bourke J. R., Hawker R. W. The thyrotrophin receptor in guinea-pig thyroid homogenate: general properties. J Endocrinol. 1974 Jun;61(3):419–436. doi: 10.1677/joe.0.0610419. [DOI] [PubMed] [Google Scholar]
  17. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  18. Pollet R. J., Standaert M. L., Haase B. A. Insulin binding to the human lymphocyte receptor. Evaluation of the negative cooperativity model. J Biol Chem. 1977 Aug 25;252(16):5828–5834. [PubMed] [Google Scholar]
  19. Rosenthal H. E. A graphic method for the determination and presentation of binding parameters in a complex system. Anal Biochem. 1967 Sep;20(3):525–532. doi: 10.1016/0003-2697(67)90297-7. [DOI] [PubMed] [Google Scholar]
  20. Sandvig K., Olsnes S., Pihl A. Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J Biol Chem. 1976 Jul 10;251(13):3977–3984. [PubMed] [Google Scholar]
  21. Tate R. L., Schwartz H. I., Holmes J. M., Kohn L. D. Thyrotropin receptors in thyroid plasma membranes. Characteristics of thyrotropin binding and solubilization of thyrotropin receptor activity by tryptic digestion. J Biol Chem. 1975 Aug 25;250(16):6509–6515. [PubMed] [Google Scholar]
  22. Thorell J. I., Johansson B. G. Enzymatic iodination of polypeptides with 125I to high specific activity. Biochim Biophys Acta. 1971 Dec 28;251(3):363–369. doi: 10.1016/0005-2795(71)90123-1. [DOI] [PubMed] [Google Scholar]
  23. Verrier B., Fayet G., Lissitzky S. Thyrotropin-binding properties of isolated thyroid cells and their purified plasma membranes. Relation of thyrotropin-specific binding to adenylate-cyclase activation. Eur J Biochem. 1974 Mar 1;42(2):355–365. doi: 10.1111/j.1432-1033.1974.tb03347.x. [DOI] [PubMed] [Google Scholar]
  24. de Meyts P., Roth J., Neville D. M., Jr, Gavin J. R., 3rd, Lesniak M. A. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun. 1973 Nov 1;55(1):154–161. doi: 10.1016/s0006-291x(73)80072-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES