Abstract
Nocturnal melatonin production in the pineal gland is under the control of norepinephrine released from superior cervical ganglia afferents in a rhythmic manner, and of cyclic AMP. Cyclic AMP increases the expression of serotonin N-acetyltransferase and of inducible cAMP early repressor that undergo circadian oscillations crucial for the maintenance and regulation of the biological clock. In the present study, we demonstrate a circadian pattern of expression of the calcium/calmodulin activated adenylyl cyclase type 1 (AC1) mRNA in the rat pineal gland. In situ hybridization revealed that maximal AC1 mRNA expression occurred at midday (12:00-15:00), with a very low signal at night (0:00-3:00). We established that this rhythmic pattern was controlled by the noradrenergic innervation of the pineal gland and by the environmental light conditions. Finally, we observed a circadian responsiveness of the pineal AC activity to calcium/calmodulin, with a lag due to the processing of the protein. At midday, AC activity was inhibited by calcium (40%) either in the presence or absence of calmodulin, while at night the enzyme was markedly (3-fold) activated by the calcium-calmodulin complex. These findings suggest (i) the involvement of AC1 acting as the center of a gating mechanism, between cyclic AMP and calcium signals, important for the fine tuning of the pineal circadian rhythm; and (ii) a possible regulation of cyclic AMP on the expression of AC1 in the rat pineal gland.
Full text
PDF![11208](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bd/38309/c3fdaf9093fe/pnas01524-0681.png)
![11209](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bd/38309/de4233114a7f/pnas01524-0682.png)
![11210](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bd/38309/e72a712d2e03/pnas01524-0683.png)
![11211](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bd/38309/4a7d27711000/pnas01524-0684.png)
![11212](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68bd/38309/6172f6aa4255/pnas01524-0685.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod J. The pineal gland: a neurochemical transducer. Science. 1974 Jun 28;184(4144):1341–1348. doi: 10.1126/science.184.4144.1341. [DOI] [PubMed] [Google Scholar]
- Baler R., Klein D. C. Circadian expression of transcription factor Fra-2 in the rat pineal gland. J Biol Chem. 1995 Nov 10;270(45):27319–27325. doi: 10.1074/jbc.270.45.27319. [DOI] [PubMed] [Google Scholar]
- Bentley J. K., Beavo J. A. Regulation and function of cyclic nucleotides. Curr Opin Cell Biol. 1992 Apr;4(2):233–240. doi: 10.1016/0955-0674(92)90038-e. [DOI] [PubMed] [Google Scholar]
- Borjigin J., Wang M. M., Snyder S. H. Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland. Nature. 1995 Dec 21;378(6559):783–785. doi: 10.1038/378783a0. [DOI] [PubMed] [Google Scholar]
- Buda M., Klein D. C. A suspension culture of pinealocytes: regulation of N-acetyltransferase activity. Endocrinology. 1978 Oct;103(4):1483–1493. doi: 10.1210/endo-103-4-1483. [DOI] [PubMed] [Google Scholar]
- Carter D. A. Neurotransmitter-stimulated immediate-early gene responses are organized through differential post-synaptic receptor mechanisms. Brain Res Mol Brain Res. 1992 Nov;16(1-2):111–118. doi: 10.1016/0169-328x(92)90200-u. [DOI] [PubMed] [Google Scholar]
- Carter D. A. Up-regulation of beta 1-adrenoceptor messenger ribonucleic acid in the rat pineal gland: nocturnally, through a beta-adrenoceptor-linked mechanism, and in vitro, through a novel posttranscriptional mechanism activated by specific protein synthesis inhibitors. Endocrinology. 1993 Nov;133(5):2263–2268. doi: 10.1210/endo.133.5.8404679. [DOI] [PubMed] [Google Scholar]
- Choi E. J., Wong S. T., Dittman A. H., Storm D. R. Phorbol ester stimulation of the type I and type III adenylyl cyclases in whole cells. Biochemistry. 1993 Mar 2;32(8):1891–1894. doi: 10.1021/bi00059a001. [DOI] [PubMed] [Google Scholar]
- Choi E. J., Wong S. T., Hinds T. R., Storm D. R. Calcium and muscarinic agonist stimulation of type I adenylylcyclase in whole cells. J Biol Chem. 1992 Jun 25;267(18):12440–12442. [PubMed] [Google Scholar]
- Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
- Coon S. L., Roseboom P. H., Baler R., Weller J. L., Namboodiri M. A., Koonin E. V., Klein D. C. Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis. Science. 1995 Dec 8;270(5242):1681–1683. doi: 10.1126/science.270.5242.1681. [DOI] [PubMed] [Google Scholar]
- Dash P. K., Karl K. A., Colicos M. A., Prywes R., Kandel E. R. cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):5061–5065. doi: 10.1073/pnas.88.11.5061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glatt C. E., Snyder S. H. Cloning and expression of an adenylyl cyclase localized to the corpus striatum. Nature. 1993 Feb 11;361(6412):536–538. doi: 10.1038/361536a0. [DOI] [PubMed] [Google Scholar]
- Habecker B. A., Malec N. M., Landis S. C. Differential regulation of adrenergic receptor development by sympathetic innervation. J Neurosci. 1996 Jan;16(1):229–237. doi: 10.1523/JNEUROSCI.16-01-00229.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanoune J., Stengel D., Lacombe M. L., Feldmann G., Coudrier E. Proteolytic activation of rat liver adenylate cyclase by a contaminant of crude collagenase from Clostridium histolyticum. J Biol Chem. 1977 Mar 25;252(6):2039–2045. [PubMed] [Google Scholar]
- Impey S., Wayman G., Wu Z., Storm D. R. Type I adenylyl cyclase functions as a coincidence detector for control of cyclic AMP response element-mediated transcription: synergistic regulation of transcription by Ca2+ and isoproterenol. Mol Cell Biol. 1994 Dec;14(12):8272–8281. doi: 10.1128/mcb.14.12.8272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lalli E., Sassone-Corsi P. Signal transduction and gene regulation: the nuclear response to cAMP. J Biol Chem. 1994 Jul 1;269(26):17359–17362. [PubMed] [Google Scholar]
- Matthews R. P., Guthrie C. R., Wailes L. M., Zhao X., Means A. R., McKnight G. S. Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol. 1994 Sep;14(9):6107–6116. doi: 10.1128/mcb.14.9.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikuni M., Saito Y., Koyama T., Yamashita I. Circadian variation of cyclic AMP in the rat pineal gland. J Neurochem. 1981 Mar;36(3):1295–1297. doi: 10.1111/j.1471-4159.1981.tb01733.x. [DOI] [PubMed] [Google Scholar]
- Molina C. A., Foulkes N. S., Lalli E., Sassone-Corsi P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell. 1993 Dec 3;75(5):875–886. doi: 10.1016/0092-8674(93)90532-u. [DOI] [PubMed] [Google Scholar]
- Mons N., Cooper D. M. Adenylate cyclases: critical foci in neuronal signaling. Trends Neurosci. 1995 Dec;18(12):536–542. doi: 10.1016/0166-2236(95)98375-9. [DOI] [PubMed] [Google Scholar]
- Mons N., Yoshimura M., Cooper D. M. Discrete expression of Ca2+/calmodulin-sensitive and Ca(2+)-insensitive adenylyl cyclases in the rat brain. Synapse. 1993 May;14(1):51–59. doi: 10.1002/syn.890140108. [DOI] [PubMed] [Google Scholar]
- Moore R. Y. Neural control of the pineal gland. Behav Brain Res. 1996;73(1-2):125–130. doi: 10.1016/0166-4328(96)00083-6. [DOI] [PubMed] [Google Scholar]
- Pangerl B., Pangerl A., Reiter R. J. Circadian variations of adrenergic receptors in the mammalian pineal gland: a review. J Neural Transm Gen Sect. 1990;81(1):17–29. doi: 10.1007/BF01245442. [DOI] [PubMed] [Google Scholar]
- Post S. R., Hilal-Dandan R., Urasawa K., Brunton L. L., Insel P. A. Quantification of signalling components and amplification in the beta-adrenergic-receptor-adenylate cyclase pathway in isolated adult rat ventricular myocytes. Biochem J. 1995 Oct 1;311(Pt 1):75–80. doi: 10.1042/bj3110075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiter R. J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev. 1991 May;12(2):151–180. doi: 10.1210/edrv-12-2-151. [DOI] [PubMed] [Google Scholar]
- Romero J. A., Zatz M., Kebabian J. W., Axelrod J. Circadian cycles in binding of 3H-alprenolol to beta-adrenergic receptor sites in rat pineal. Nature. 1975 Dec 4;258(5534):435–436. doi: 10.1038/258435a0. [DOI] [PubMed] [Google Scholar]
- Roseboom P. H., Klein D. C. Norepinephrine stimulation of pineal cyclic AMP response element-binding protein phosphorylation: primary role of a beta-adrenergic receptor/cyclic AMP mechanism. Mol Pharmacol. 1995 Mar;47(3):439–449. [PubMed] [Google Scholar]
- Sassone-Corsi P. Rhythmic transcription and autoregulatory loops: winding up the biological clock. Cell. 1994 Aug 12;78(3):361–364. doi: 10.1016/0092-8674(94)90415-4. [DOI] [PubMed] [Google Scholar]
- Spessert R., Albertowski K., Reuss S., Layes E., Vollrath L. Down-regulation of the nocturnally elevated guanylyl cyclase activity in the rat pineal gland. Neurosci Lett. 1995 Apr 28;190(1):61–64. doi: 10.1016/0304-3940(95)11500-v. [DOI] [PubMed] [Google Scholar]
- Stehle J. H., Foulkes N. S., Molina C. A., Simonneaux V., Pévet P., Sassone-Corsi P. Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature. 1993 Sep 23;365(6444):314–320. doi: 10.1038/365314a0. [DOI] [PubMed] [Google Scholar]
- Sugden D., Vanecek J., Klein D. C., Thomas T. P., Anderson W. B. Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. 1985 Mar 28-Apr 3Nature. 314(6009):359–361. doi: 10.1038/314359a0. [DOI] [PubMed] [Google Scholar]
- Sun P., Lou L., Maurer R. A. Regulation of activating transcription factor-1 and the cAMP response element-binding protein by Ca2+/calmodulin-dependent protein kinases type I, II, and IV. J Biol Chem. 1996 Feb 9;271(6):3066–3073. doi: 10.1074/jbc.271.6.3066. [DOI] [PubMed] [Google Scholar]
- Vanecek J., Sugden D., Weller J., Klein D. C. Atypical synergistic alpha 1- and beta-adrenergic regulation of adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in rat pinealocytes. Endocrinology. 1985 Jun;116(6):2167–2173. doi: 10.1210/endo-116-6-2167. [DOI] [PubMed] [Google Scholar]
- Wayman G. A., Impey S., Wu Z., Kindsvogel W., Prichard L., Storm D. R. Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs-coupled receptors in vivo. J Biol Chem. 1994 Oct 14;269(41):25400–25405. [PubMed] [Google Scholar]
- Wu Z. L., Thomas S. A., Villacres E. C., Xia Z., Simmons M. L., Chavkin C., Palmiter R. D., Storm D. R. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):220–224. doi: 10.1073/pnas.92.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia Z., Choi E. J., Wang F., Blazynski C., Storm D. R. Type I calmodulin-sensitive adenylyl cyclase is neural specific. J Neurochem. 1993 Jan;60(1):305–311. doi: 10.1111/j.1471-4159.1993.tb05852.x. [DOI] [PubMed] [Google Scholar]