Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 1;93(20):11231–11235. doi: 10.1073/pnas.93.20.11231

Threonine-for-leucine mutation within domain M2 of the neuronal alpha(7) nicotinic receptor converts 5-hydroxytryptamine from antagonist to agonist.

E Palma 1, A M Mileo 1, F Eusebi 1, R Miledi 1
PMCID: PMC38313  PMID: 8855338

Abstract

A study was made of the effects of 5-hydroxytryptamine (5HT) on homomeric neuronal nicotinic receptors (nAcChoR) expressed in Xenopus oocytes after injection of cDNA encoding the wild-type chicken alpha(7) subunit. Acetylcholine (AcCho) elicited large currents (IAcCho) that were reduced by 5HT in a reversible and dose-dependent manner, with a half-inhibitory concentration (IC50) of 56 microM and a Hill coefficient (nH) of 1.2. The inhibition of IAcCho by 5HT was noncompetitive and voltage independent, a behavior incompatible with a channel blockade mechanism. 5HT alone did not elicit membrane currents in oocytes injected with the wild-type alpha(7) subunit cDNA. In contrast, 5HT elicited membrane currents (I5HT) in oocytes injected with cDNA encoding an alpha(7) mutant subunit with a threonine-for-leucine-247 substitution (L247T alpha(7)). I5HT was inhibited by the potent nicotinic receptor blockers alpha-bungarotoxin (100 nM) and methyllycaconitine (1 microM). Furthermore, the characteristics of I5HT, including its voltage dependence, were similar to those of IAcCho. The 5HT dose-I5HT response gave an apparent dissociation constant EC50 of 23.5 microM and a Hill coefficient nH of 1.7, which were not modified by the presence of AcCho. Similarly, the apparent affinity of L247T alpha(7) for AcCho as well as its cooperativity were not influenced by 5HT, indicating a lack of mutual interactions between 5HT and AcCho. These results show that 5HT is a potent noncompetitive antagonist of neuronal alpha(7) nAcChoR, but it becomes a noncompetitive agonist following mutation of the highly conserved leucine residue 247 located in the channel domain M2.

Full text

PDF
11231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akasu T., Karczmar A. G., Koketsu K. Effects of serotonin (5-hydroxytryptamine) on amphibian neuromuscular junction. Eur J Pharmacol. 1983 Mar 18;88(1):63–70. doi: 10.1016/0014-2999(83)90392-8. [DOI] [PubMed] [Google Scholar]
  2. Akasu T., Koketsu K. 5-Hydroxytryptamine decreases the sensitivity of nicotinic acetylcholine receptor in bull-frog sympathetic ganglion cells. J Physiol. 1986 Nov;380:93–109. doi: 10.1113/jphysiol.1986.sp016274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albuquerque E. X., Pereira E. F., Castro N. G., Alkondon M., Reinhardt S., Schröder H., Maelicke A. Nicotinic receptor function in the mammalian central nervous system. Ann N Y Acad Sci. 1995 May 10;757:48–72. doi: 10.1111/j.1749-6632.1995.tb17464.x. [DOI] [PubMed] [Google Scholar]
  4. Bertrand D., Devillers-Thiéry A., Revah F., Galzi J. L., Hussy N., Mulle C., Bertrand S., Ballivet M., Changeux J. P. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1261–1265. doi: 10.1073/pnas.89.4.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boess F. G., Martin I. L. Molecular biology of 5-HT receptors. Neuropharmacology. 1994 Mar-Apr;33(3-4):275–317. doi: 10.1016/0028-3908(94)90059-0. [DOI] [PubMed] [Google Scholar]
  6. Colomo F., Rahamimoff R., Stefani E. An action of 5-hydroxytryptamine on the frog motor end-plate. Eur J Pharmacol. 1968 Jun;3(3):272–274. doi: 10.1016/0014-2999(68)90143-x. [DOI] [PubMed] [Google Scholar]
  7. Couturier S., Bertrand D., Matter J. M., Hernandez M. C., Bertrand S., Millar N., Valera S., Barkas T., Ballivet M. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron. 1990 Dec;5(6):847–856. doi: 10.1016/0896-6273(90)90344-f. [DOI] [PubMed] [Google Scholar]
  8. Criado M., Alamo L., Navarro A. Primary structure of an agonist binding subunit of the nicotinic acetylcholine receptor from bovine adrenal chromaffin cells. Neurochem Res. 1992 Mar;17(3):281–287. doi: 10.1007/BF00966671. [DOI] [PubMed] [Google Scholar]
  9. Cross K. M., Foreman R. C., Chad J. E. Enhancement by 5-hydroxytryptamine and analogues of desensitization of neuronal and muscle nicotinic receptors expressed in Xenopus oocytes. Br J Pharmacol. 1995 Apr;114(8):1636–1640. doi: 10.1111/j.1476-5381.1995.tb14951.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dominguez del Toro E., Juiz J. M., Peng X., Lindstrom J., Criado M. Immunocytochemical localization of the alpha 7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system. J Comp Neurol. 1994 Nov 15;349(3):325–342. doi: 10.1002/cne.903490302. [DOI] [PubMed] [Google Scholar]
  11. Filatov G. N., White M. M. The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Mol Pharmacol. 1995 Sep;48(3):379–384. [PubMed] [Google Scholar]
  12. García-Colunga J., Miledi R. Effects of serotonergic agents on neuronal nicotinic acetylcholine receptors. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2919–2923. doi: 10.1073/pnas.92.7.2919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. García-Colunga J., Miledi R. Serotonergic modulation of muscle acetylcholine receptors of different subunit composition. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3990–3994. doi: 10.1073/pnas.93.9.3990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grassi F., Polenzani L., Mileo A. M., Caratsch C. G., Eusebi F., Miledi R. Blockage of nicotinic acetylcholine receptors by 5-hydroxytryptamine. J Neurosci Res. 1993 Apr 1;34(5):562–570. doi: 10.1002/jnr.490340508. [DOI] [PubMed] [Google Scholar]
  15. Hill R. B., Usherwood P. N. The action of 5-hydroxytryptamine and related compounds on neuromuscular transmission in the locust Schistocerca gregaria. J Physiol. 1961 Jul;157(2):393–401. doi: 10.1113/jphysiol.1961.sp006730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Labarca C., Nowak M. W., Zhang H., Tang L., Deshpande P., Lester H. A. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature. 1995 Aug 10;376(6540):514–516. doi: 10.1038/376514a0. [DOI] [PubMed] [Google Scholar]
  17. McGehee D. S., Role L. W. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol. 1995;57:521–546. doi: 10.1146/annurev.ph.57.030195.002513. [DOI] [PubMed] [Google Scholar]
  18. Mileo A. M., Monaco L., Palma E., Grassi F., Miledi R., Eusebi F. Two forms of acetylcholine receptor gamma subunit in mouse muscle. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2686–2690. doi: 10.1073/pnas.92.7.2686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakazawa K., Akiyama T., Inoue K. Block by 5-hydroxytryptamine of neuronal acetylcholine receptor channels expressed in Xenopus oocytes. Cell Mol Neurobiol. 1995 Aug;15(4):495–500. doi: 10.1007/BF02071882. [DOI] [PubMed] [Google Scholar]
  20. Palma E., Bertrand S., Binzoni T., Bertrand D. Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. J Physiol. 1996 Feb 15;491(Pt 1):151–161. doi: 10.1113/jphysiol.1996.sp021203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Revah F., Bertrand D., Galzi J. L., Devillers-Thiéry A., Mulle C., Hussy N., Bertrand S., Ballivet M., Changeux J. P. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature. 1991 Oct 31;353(6347):846–849. doi: 10.1038/353846a0. [DOI] [PubMed] [Google Scholar]
  22. Unwin N. Acetylcholine receptor channel imaged in the open state. Nature. 1995 Jan 5;373(6509):37–43. doi: 10.1038/373037a0. [DOI] [PubMed] [Google Scholar]
  23. Vijayaraghavan S., Schmid H. A., Mapp K. S. Serotonin modulates nicotinic responses of adrenal chromaffin cells. J Neurochem. 1993 Jul;61(1):324–331. doi: 10.1111/j.1471-4159.1993.tb03571.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES