Abstract
In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2(+)-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cockcroft J. R., Chowienczyk P. J., Benjamin N., Ritter J. M. Preserved endothelium-dependent vasodilatation in patients with essential hypertension. N Engl J Med. 1994 Apr 14;330(15):1036–1040. doi: 10.1056/NEJM199404143301502. [DOI] [PubMed] [Google Scholar]
- Davies P. F. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995 Jul;75(3):519–560. doi: 10.1152/physrev.1995.75.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dominiczak A. F., Bohr D. F. Nitric oxide and its putative role in hypertension. Hypertension. 1995 Jun;25(6):1202–1211. doi: 10.1161/01.hyp.25.6.1202. [DOI] [PubMed] [Google Scholar]
- Egashira K., Suzuki S., Hirooka Y., Kai H., Sugimachi M., Imaizumi T., Takeshita A. Impaired endothelium-dependent vasodilation of large epicardial and resistance coronary arteries in patients with essential hypertension. Different responses to acetylcholine and substance P. Hypertension. 1995 Feb;25(2):201–206. doi: 10.1161/01.hyp.25.2.201. [DOI] [PubMed] [Google Scholar]
- Ferrante F., Abbate F., Ciriaco E., Laurà R., Amenta F. Influence of isradipine treatment on the morphology of the aorta in spontaneously hypertensive rats. J Hypertens. 1994 May;12(5):523–531. [PubMed] [Google Scholar]
- Fichtner H., Fröbe U., Busse R., Kohlhardt M. Single nonselective cation channels and Ca2+-activated K+ channels in aortic endothelial cells. J Membr Biol. 1987;98(2):125–133. doi: 10.1007/BF01872125. [DOI] [PubMed] [Google Scholar]
- Franco-Obregón A., Jr, Lansman J. B. Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol. 1994 Dec 1;481(Pt 2):299–309. doi: 10.1113/jphysiol.1994.sp020440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franco A., Jr, Lansman J. B. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature. 1990 Apr 12;344(6267):670–673. doi: 10.1038/344670a0. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Vanhoutte P. M. Endothelium-derived relaxing and contracting factors. FASEB J. 1989 Jul;3(9):2007–2018. [PubMed] [Google Scholar]
- Gordon E. L., Danielsson P. E., Nguyen T. S., Winn H. R. A comparison of primary cultures of rat cerebral microvascular endothelial cells to rat aortic endothelial cells. In Vitro Cell Dev Biol. 1991 Apr;27A(4):312–326. doi: 10.1007/BF02630909. [DOI] [PubMed] [Google Scholar]
- Guharay F., Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984 Jul;352:685–701. doi: 10.1113/jphysiol.1984.sp015317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hisada T., Walsh J. V., Jr, Singer J. J. Stretch-inactivated cationic channels in single smooth muscle cells. Pflugers Arch. 1993 Jan;422(4):393–396. doi: 10.1007/BF00374296. [DOI] [PubMed] [Google Scholar]
- Hoyer J., Distler A., Haase W., Gögelein H. Ca2+ influx through stretch-activated cation channels activates maxi K+ channels in porcine endocardial endothelium. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2367–2371. doi: 10.1073/pnas.91.6.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koller A., Huang A. Impaired nitric oxide-mediated flow-induced dilation in arterioles of spontaneously hypertensive rats. Circ Res. 1994 Mar;74(3):416–421. doi: 10.1161/01.res.74.3.416. [DOI] [PubMed] [Google Scholar]
- Lansman J. B., Hallam T. J., Rink T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? 1987 Feb 26-Mar 4Nature. 325(6107):811–813. doi: 10.1038/325811a0. [DOI] [PubMed] [Google Scholar]
- Lund-Johansen P. Newer thinking on the hemodynamics of hypertension. Curr Opin Cardiol. 1994 Sep;9(5):505–511. doi: 10.1097/00001573-199409000-00002. [DOI] [PubMed] [Google Scholar]
- Lückhoff A., Busse R. Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflugers Arch. 1990 May;416(3):305–311. doi: 10.1007/BF00392067. [DOI] [PubMed] [Google Scholar]
- Lüscher T. F., Diederich D., Weber E., Vanhoutte P. M., Bühler F. R. Endothelium-dependent responses in carotid and renal arteries of normotensive and hypertensive rats. Hypertension. 1988 Jun;11(6 Pt 2):573–578. doi: 10.1161/01.hyp.11.6.573. [DOI] [PubMed] [Google Scholar]
- Lüscher T. F. The endothelium. Target and promoter of hypertension? Hypertension. 1990 May;15(5):482–485. doi: 10.1161/01.hyp.15.5.482. [DOI] [PubMed] [Google Scholar]
- Mayer B., Schmidt K., Humbert P., Böhme E. Biosynthesis of endothelium-derived relaxing factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of soluble guanylyl cyclase. Biochem Biophys Res Commun. 1989 Oct 31;164(2):678–685. doi: 10.1016/0006-291x(89)91513-1. [DOI] [PubMed] [Google Scholar]
- Mills J. W., Schwiebert E. M., Stanton B. A. The cytoskeleton and membrane transport. Curr Opin Nephrol Hypertens. 1994 Sep;3(5):529–534. doi: 10.1097/00041552-199409000-00009. [DOI] [PubMed] [Google Scholar]
- Mombouli J. V., Vanhoutte P. M. Purinergic endothelium-dependent and -independent contractions in rat aorta. Hypertension. 1993 Oct;22(4):577–583. doi: 10.1161/01.hyp.22.4.577. [DOI] [PubMed] [Google Scholar]
- Morris C. E. Mechanosensitive ion channels. J Membr Biol. 1990 Feb;113(2):93–107. doi: 10.1007/BF01872883. [DOI] [PubMed] [Google Scholar]
- Morris C. E., Sigurdson W. J. Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science. 1989 Feb 10;243(4892):807–809. doi: 10.1126/science.2536958. [DOI] [PubMed] [Google Scholar]
- Nilius B. Permeation properties of a non-selective cation channel in human vascular endothelial cells. Pflugers Arch. 1990 Jul;416(5):609–611. doi: 10.1007/BF00382697. [DOI] [PubMed] [Google Scholar]
- Olesen S. P., Clapham D. E., Davies P. F. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature. 1988 Jan 14;331(6152):168–170. doi: 10.1038/331168a0. [DOI] [PubMed] [Google Scholar]
- Panza J. A., Quyyumi A. A., Brush J. E., Jr, Epstein S. E. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990 Jul 5;323(1):22–27. doi: 10.1056/NEJM199007053230105. [DOI] [PubMed] [Google Scholar]
- Pohl U., Holtz J., Busse R., Bassenge E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension. 1986 Jan;8(1):37–44. doi: 10.1161/01.hyp.8.1.37. [DOI] [PubMed] [Google Scholar]
- Popp R., Hoyer J., Meyer J., Galla H. J., Gögelein H. Stretch-activated non-selective cation channels in the antiluminal membrane of porcine cerebral capillaries. J Physiol. 1992 Aug;454:435–449. doi: 10.1113/jphysiol.1992.sp019272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawada Y., Sakamaki T., Nakamura T., Sato K., Ono Z., Murata K. Release of nitric oxide in response to acetylcholine is unaltered in spontaneously hypertensive rats. J Hypertens. 1994 Jul;12(7):745–750. [PubMed] [Google Scholar]
- Sokabe M., Sachs F. The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy. J Cell Biol. 1990 Aug;111(2):599–606. doi: 10.1083/jcb.111.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van de Voorde J., Vanheel B., Leusen I. Endothelium-dependent relaxation and hyperpolarization in aorta from control and renal hypertensive rats. Circ Res. 1992 Jan;70(1):1–8. doi: 10.1161/01.res.70.1.1. [DOI] [PubMed] [Google Scholar]
- Winquist R. J., Bunting P. B., Baskin E. P., Wallace A. A. Decreased endothelium-dependent relaxation in New Zealand genetic hypertensive rats. J Hypertens. 1984 Oct;2(5):541–545. doi: 10.1097/00004872-198410000-00015. [DOI] [PubMed] [Google Scholar]