Abstract
The aliphatic region of the 13C NMR spectrum of sperm whale cyanoferrimyoglobin has been examined at 67.9 MHz. Fifty partially resolved or well-resolved resonances, representing at least half of the aliphatic carbons in the molecule, are observed in the spectral region from 9 to 29 ppm downfield of tetramethylsilane. Analyses of the spin lattice relaxation times (T1) and nuclear Overhauser enhancements for these resonances reveal considerable motion freedom of the aliphatic side chains. In the spectral region from 9 to 15 ppm, eight single carbon resonances are observed and tentatively assigned to Cdelta 1 of eight of the nine isoleucine residues. In at least five cases the reorientational motion of the isoleucine side chains could not be characterized solely by rotation of the Cdelta 1 methyl groups. The simplest model consistent with the data is a restricted diffusion model with two degrees of internal rotation [Wittenbort, R. J. & Szabo, A. (1978) J. Chem. Phys. 69, 1722--1736]. In light of the packing densities within the myoglobin molecule these results are taken to imply concerted motions of the buried aliphatic residues.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chothia C., Janin J. Principles of protein-protein recognition. Nature. 1975 Aug 28;256(5520):705–708. doi: 10.1038/256705a0. [DOI] [PubMed] [Google Scholar]
- Cooper A. Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2740–2741. doi: 10.1073/pnas.73.8.2740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glushko V., Lawson P. J., Gurd F. R. Conformational states of bovine pancreatic ribonuclease A observed by normal and partially relaxed carbon 13 nuclear magnetic resonance. J Biol Chem. 1972 May 25;247(10):3176–3185. [PubMed] [Google Scholar]
- Gurd F. R., Keim P. The prospects for carbon-13 nuclear magnetic resonance studies in enzymology. Methods Enzymol. 1973;27:836–911. doi: 10.1016/s0076-6879(73)27037-4. [DOI] [PubMed] [Google Scholar]
- Hapner K. D., Bradshaw R. A., Hartzell C. R., Gurd F. R. Comparison of myoglobins from harbor seal, porpoise, and sperm whale. I. Preparation and characterization. J Biol Chem. 1968 Feb 25;243(4):683–689. [PubMed] [Google Scholar]
- Hugli T. E., Gurd F. R. Carboxymethylation of sperm whale myoglobin in the dissolved state. J Biol Chem. 1970 Apr 25;245(8):1939–1946. [PubMed] [Google Scholar]
- Jones W. C., Rothgeb T. M., Gurd F. R. Nuclear magnetic resonance studies of sperm whale myoglobin specifically enriched with 13C in the methionine methyl groups. J Biol Chem. 1976 Dec 10;251(23):7452–7460. [PubMed] [Google Scholar]
- Keim P., Vigna R. A., Marshall R. C., Gurd F. R. Carbon 13 nuclear magnetic resonance of pentapeptides of glycine containing central residues of aliphatic amino acids. J Biol Chem. 1973 Sep 10;248(17):6104–6113. [PubMed] [Google Scholar]
- Keim P., Vigna R. A., Morrow J. S., Marshall R. C., Gurd F. R. Carbon 13 nuclear magnetic resonance of pentapeptides of glycine containing central residues of serine, threonine, aspartic and glutamic acids, asparagine, and glutamine. J Biol Chem. 1973 Nov 25;248(22):7811–7818. [PubMed] [Google Scholar]
- Keim P., Vigna R. A., Nigen A. M., Morrow J. S., Gurd F. R. Carbon 13 nuclear magnetic resonance of pentapeptides of glycine containing central residues of methionine, proline, arginine, and lysine. J Biol Chem. 1974 Jul 10;249(13):4149–4156. [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Matthew J. B., Hanania G. I., Gurd F. R. Solvent accessibility calculations for sperm whale ferrimyoglobin based on refined crystallographic data. Biochem Biophys Res Commun. 1978 Mar 30;81(2):410–415. doi: 10.1016/0006-291x(78)91548-6. [DOI] [PubMed] [Google Scholar]
- McCammon J. A., Gelin B. R., Karplus M. Dynamics of folded proteins. Nature. 1977 Jun 16;267(5612):585–590. doi: 10.1038/267585a0. [DOI] [PubMed] [Google Scholar]
- Morrow J. S., Gurd F. R. Nuclear magnetic resonance studies of hemoglobin: functional state correlations and isotopic enrichment strategies. CRC Crit Rev Biochem. 1975 Dec;3(3):221–287. doi: 10.3109/10409237509105453. [DOI] [PubMed] [Google Scholar]
- Nelson D. J., Opella S. J., Jardetzky O. 13C nuclear magnetic resonance study of molecular motions and conformational transitions in muscle calcium binding parvalbumins. Biochemistry. 1976 Dec 14;15(25):5552–5560. doi: 10.1021/bi00670a020. [DOI] [PubMed] [Google Scholar]
- Nigen A. M., Keim P., Marshall R. C., Glushko V., Lawson P. J., Gurd F. R. Natural abundance carbon 13 nuclear magnetic resonance of cyanoferrimyoglobins and of some carboxymethyl derivatives. J Biol Chem. 1973 May 25;248(10):3716–3723. [PubMed] [Google Scholar]
- Norton R. S., Clouse A. O., Addleman R., Allerhand A. Studies of proteins in solution by natural-abundance carbon-13 nuclear magnetic resonance. Spectral resolution and relaxation behavior at high magnetic field strengths. J Am Chem Soc. 1977 Jan 5;99(1):79–83. doi: 10.1021/ja00443a016. [DOI] [PubMed] [Google Scholar]
- Oldfield E., Norton R. S., Allerhand A. Studies of individual carbon sites of proteins in solution by natural abundance carbon 13 nuclear magnetic resonance spectroscopy. Strategies for assignments. J Biol Chem. 1975 Aug 25;250(16):6381–6402. [PubMed] [Google Scholar]
- Privalov P. L., Khechinashvili N. N., Atanasov B. P. Thermodynamic analysis of thermal transitions in globular proteins. I. Calorimetric study of chymotrypsinogen, ribonuclease and myoglobin. Biopolymers. 1971 Oct;10(10):1865–1890. doi: 10.1002/bip.360101009. [DOI] [PubMed] [Google Scholar]
- Richarz R., Wüthrich K. High-field 13C nuclear magnetic resonance studies at 90.5 MHz of the basic pancreatic trypsin inhibitor. Biochemistry. 1978 Jun 13;17(12):2263–2269. doi: 10.1021/bi00605a002. [DOI] [PubMed] [Google Scholar]
- Richmond T. J., Richards F. M. Packing of alpha-helices: geometrical constraints and contact areas. J Mol Biol. 1978 Mar 15;119(4):537–555. doi: 10.1016/0022-2836(78)90201-2. [DOI] [PubMed] [Google Scholar]
- Sheard B., Yamane T., Shulman R. G. Nuclear magnetic resonance study of cyanoferrimyoglobin; identification of pseudocontact shifts. J Mol Biol. 1970 Oct 14;53(1):35–48. doi: 10.1016/0022-2836(70)90044-6. [DOI] [PubMed] [Google Scholar]
- Takano T. Structure of myoglobin refined at 2-0 A resolution. II. Structure of deoxymyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):569–584. doi: 10.1016/s0022-2836(77)80112-5. [DOI] [PubMed] [Google Scholar]
- Visscher R. B., Gurd F. R. Rotational motions in myoglobin assessed by carbon 13 relaxation measurements at two magnetic field strengths. J Biol Chem. 1975 Mar 25;250(6):2238–2242. [PubMed] [Google Scholar]
- Wilbur D. J., Norton R. S., Clouse A. O., Addleman R., Allerhand A. Determination of rotational correlation times of proteins in solution from carbon-13 spin-lattice relaxation measurements. Effect of magnetic field strength and anisotropic rotation. J Am Chem Soc. 1976 Dec 8;98(25):8250–8254. doi: 10.1021/ja00441a059. [DOI] [PubMed] [Google Scholar]