Abstract
The immunochemical and structural characteristics of the alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] from mouse teratoma stem cells derived from the OTT-6050 teratoma (ascitic and solid tumors and the F9 and PCC4 cell lines) have been compared to those of the alkaline phosphatases expressed in normal mouse placenta and several adult organs. Crossreactivity of the stem cell alkaline phosphatase with antisera reacting with placental, kidney, liver, and brain alkaline phosphatases indicated that the stem cell enzyme had common antigenic determinants. Structural studies utilizing two-dimensional electrophoresis of the 32P-labeled alkaline phosphatase subunits showed that the stem cell, placental, and kidney alkaline phosphatases differed only in their sialic acid content and comigrated after removal of terminal sialic acid by neuraminidase digestion. Furthermore, one-dimensional peptide mapping of partial proteolysis fragments from 32P-labeled enzymes demonstrated identical fragmentation patterns for the stem cell and somatic enzymes. These immunochemical and structural data indicate that the stem cell alkaline phosphatase is the same core enzyme as that produced in the mouse placenta and kidney, with different amounts of terminal sialic acid. The one mouse alkaline phosphatase examined that differed from the other enzymes was the intestinal alkaline phosphatase. This isoenzyme was not immunochemically crossreactive with the other alkaline phosphatases, did not comigrate in two-dimensional electrophoresis after neuraminidase digestion, and did not give identical peptide maps after partial proteolysis.
Keywords: 32P lebeling, immunoprecipitation, two-dimensional electrophoresis, peptide mapping
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson N. N., Jr, Touster O. Isolation of rat liver plasma membrane fragments in isotonic sucrose. Methods Enzymol. 1974;31:90–102. doi: 10.1016/0076-6879(74)31009-9. [DOI] [PubMed] [Google Scholar]
- Artzt K., Dubois P., Bennett D., Condamine H., Babinet C., Jacob F. Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2988–2992. doi: 10.1073/pnas.70.10.2988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Badger K. S., Sussman H. H. Structural evidence that human liver and placental alkaline phosphatase isoenzymes are coded by different genes. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2201–2205. doi: 10.1073/pnas.73.7.2201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berstine E. G., Hooper M. L., Grandchamp S., Ephrussi B. Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3899–3903. doi: 10.1073/pnas.70.12.3899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
- Damjanov I., Solter D., Skreb N. Enzyme histochemistry of experimental embryo-derived teratocarcinomas. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1971;76(4):249–256. doi: 10.1007/BF00304029. [DOI] [PubMed] [Google Scholar]
- Hiwada K., Wachsmuth E. D. Alkaline phosphatase from pig kidney. Microheterogeneity and the role of neuraminic acid. Biochem J. 1974 Jul;141(1):293–298. doi: 10.1042/bj1410293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MILLER D., CRANE R. K. A procedure for the isolation of the epithelial brush border membrane of hamster small intestine. Anal Biochem. 1961 Jun;2:284–286. doi: 10.1016/s0003-2697(61)80014-6. [DOI] [PubMed] [Google Scholar]
- Milstein C. The amino acid sequence around the reactive serine residue in alkaline phosphatase from Escherichia coli. Biochem J. 1964 Aug;92(2):410–421. doi: 10.1042/bj0920410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nayudu P. R., Hercus F. B. Molecular heterogeneity of mouse duodenal alkaline phosphatase. Association of lipids and peptides. Biochem J. 1974 Jul;141(1):93–101. doi: 10.1042/bj1410093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolas J. F., Avner P., Gaillard J., Guenet J. L., Jakob H., Jacob F. Cell lines derived from teratocarcinomas. Cancer Res. 1976 Nov;36(11 Pt 2):4224–4231. [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Sussman H. H., Small P. A., Jr, Cotlove E. Human alkaline phosphatase. Immunochemical identification of organ-specific isoenzymes. J Biol Chem. 1968 Jan 10;243(1):160–166. [PubMed] [Google Scholar]
- Wada H. G., Górnicki Z., Sussman H. H. The sialoglycoprotein subunits of human placental brush border membranes characterized by two-two-dimensional electrophoresis. J Supramol Struct. 1977;6(4):473–484. doi: 10.1002/jss.400060402. [DOI] [PubMed] [Google Scholar]
- Wada H. G., VandenBerg S. R., Sussman H. H., Grove W. E., Herman M. M. Characterization of two different alkaline phosphatases in mouse teratoma: partial purification, electrophoretic, and histochemical studies. Cell. 1976 Sep;9(1):37–44. doi: 10.1016/0092-8674(76)90050-7. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]



