Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Mar;76(3):1194–1198. doi: 10.1073/pnas.76.3.1194

Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea.

J B Ohlrogge, D N Kuhn, P K Stumpf
PMCID: PMC383216  PMID: 286305

Abstract

This communication demonstrates that all de novo fatty acid biosynthesis in spinach leaf cells requires acyl carrier protein (ACP) and occurs specifically in the chloroplasts. Antibodies raised to purified spinach ACP inhibited at least 98% of malonyl CoA-dependent fatty acid synthesis by spinach leaf homogenates. Therefore, the presence of ACP in a compartment of the spinach leaf cell would serve as a marker for de novo fatty acid biosynthesis. A radioimmunoassay capable of detecting 10(15) mol (10(-11) g) of spinach ACP was developed to measure the levels of ACP in leaf cell components isolated by sucrose gradient centrifugation of a gentle lysate of spinach leaf protoplasts. All of the ACP of the leaf cell could be attributed to the chloroplast. Less than 1% of the ACP associated with chloroplasts resulted from binding of free ACP to chloroplasts. Of interest, ACP from Escherichia coli, soybean, and sunflower showed only partial crossreactivity with spinach ACP by the radioimmunoassay. These results strongly suggest that, in the leaf cell, chloroplasts are the sole site for the de novo synthesis of C16 and C18 fatty acids. These fatty acids are then transported into the cytoplasm for further modification and are either inserted into extrachloroplastic membrane lipids or returned to the chloroplast for insertion into lamellar membrane lipids.

Full text

PDF
1194

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts A. W., Vagelos P. R. Acyl carrier protein. 8. Studies of acyl carrier protein and coenzyme A in Escherichia coli pantothenate or betaalanine auxotrophs. J Biol Chem. 1966 Nov 25;241(22):5201–5204. [PubMed] [Google Scholar]
  2. Beier H., Bruening G. The use of an abrasive in the isolation of cowpea leaf protoplasts which support the multiplication of cowpea mosaic virus. Virology. 1975 Mar;64(1):272–276. doi: 10.1016/0042-6822(75)90099-9. [DOI] [PubMed] [Google Scholar]
  3. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Frearson E. M., Power J. B., Cocking E. C. The isolation, culture and regeneration of Petunia leaf protoplasts. Dev Biol. 1973 Jul;33(1):130–137. doi: 10.1016/0012-1606(73)90169-3. [DOI] [PubMed] [Google Scholar]
  6. Ghosh H. P., Preiss J. Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem. 1966 Oct 10;241(19):4491–4504. [PubMed] [Google Scholar]
  7. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  8. Heber U., Pon N. G., Heber M. Localization of Carboxydismutase & Triosephosphate Dehydrogenases in Chloroplasts. Plant Physiol. 1963 May;38(3):355–360. doi: 10.1104/pp.38.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacobson B. S., Kannangara C. G., Stumpf P. K. Biosynthesis of -linolenic acid by disrupted spinach chloroplasts. Biochem Biophys Res Commun. 1973 Mar 17;51(2):487–493. doi: 10.1016/0006-291x(73)91283-7. [DOI] [PubMed] [Google Scholar]
  10. Jaworski J. G., Stumpf P. K. Fat metabolism in higher plants. Properties of a soluble stearyl-acyl carrier protein desaturase from maturing Carthamus tinctorius. Arch Biochem Biophys. 1974 May;162(1):158–165. doi: 10.1016/0003-9861(74)90114-3. [DOI] [PubMed] [Google Scholar]
  11. KUBITSCHEK H. E. Electronic counting and sizing of bacteria. Nature. 1958 Jul 26;182(4630):234–235. doi: 10.1038/182234a0. [DOI] [PubMed] [Google Scholar]
  12. Kleinig H., Liedvogel B. Fatty acid synthesis by isolated chromoplasts from the daffodil. [14C]Acetate incorporation and distribution of labelled acids. Eur J Biochem. 1978 Feb;83(2):499–505. doi: 10.1111/j.1432-1033.1978.tb12116.x. [DOI] [PubMed] [Google Scholar]
  13. Lorimer G. H., Badger M. R., Andrews T. J. D-Ribulose-1,5-bisphosphate carboxylase-oxygenase. Improved methods for the activation and assay of catalytic activities. Anal Biochem. 1977 Mar;78(1):66–75. doi: 10.1016/0003-2697(77)90009-4. [DOI] [PubMed] [Google Scholar]
  14. Matsumura S., Stumpf P. K. Fat metabolism in higher plants. XXXV. Partial primary structure of spinach acyl carrier protein. Arch Biochem Biophys. 1968 Jun;125(3):932–941. doi: 10.1016/0003-9861(68)90533-x. [DOI] [PubMed] [Google Scholar]
  15. Nishimura M., Graham D., Akazawa T. Isolation of intact chloroplasts and other cell organelles from spinach leaf protoplasts. Plant Physiol. 1976 Sep;58(3):309–314. doi: 10.1104/pp.58.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roughan P. G., Slack C. R. Long-chain acyl-coenzyme A synthetase activity of spinach chloroplasts is concentrated in the envelope. Biochem J. 1977 Feb 15;162(2):457–459. doi: 10.1042/bj1620457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shine W. E., Mancha M., Stumpf P. K. Fat metabolism in higher plants. The function of acyl thioesterases in the metabolism of acyl-coenzymes A and acyl-acyl carrier proteins. Arch Biochem Biophys. 1976 Jan;172(1):110–116. doi: 10.1016/0003-9861(76)90054-0. [DOI] [PubMed] [Google Scholar]
  18. Simcox P. D., Reid E. E., Canvin D. T., Dennis D. T. Enzymes of the Glycolytic and Pentose Phosphate Pathways in Proplastids from the Developing Endosperm of Ricinus communis L. Plant Physiol. 1977 Jun;59(6):1128–1132. doi: 10.1104/pp.59.6.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simoni R. D., Criddle R. S., Stumpf P. K. Fat metabolism in higher plants. XXXI. Purification and properties of plant and bacterial acyl carrier proteins. J Biol Chem. 1967 Feb 25;242(4):573–581. [PubMed] [Google Scholar]
  20. Slack C. R., Roughan P. G., Terpstra J. Some properties of a microsomal oleate desaturase from leaves. Biochem J. 1976 Apr 1;155(1):71–80. doi: 10.1042/bj1550071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tolberg A. B., Macey R. I. Osmotic behavior of spinach chloroplasts. Biochim Biophys Acta. 1965 Nov 29;109(2):424–430. doi: 10.1016/0926-6585(65)90168-8. [DOI] [PubMed] [Google Scholar]
  22. Van Den Bosch H., Williamson J. R., Vagelos P. R. Localization of acyl carrier protein in Escherichia coli. Nature. 1970 Oct 24;228(5269):338–341. doi: 10.1038/228338a0. [DOI] [PubMed] [Google Scholar]
  23. Vick B., Beevers H. Fatty Acid synthesis in endosperm of young castor bean seedlings. Plant Physiol. 1978 Aug;62(2):173–178. doi: 10.1104/pp.62.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weaire P. J., Kekwick R. G. The synthesis of fatty acids in avocado mesocarp and cauliflower bud tissue. Biochem J. 1975 Feb;146(2):425–437. doi: 10.1042/bj1460425. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES