Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Mar;76(3):1313–1317. doi: 10.1073/pnas.76.3.1313

Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation

Robert M Hoffman 1,2,3, Stephen J Jacobsen 1,2,3, Richard W Erbe 1,2,3
PMCID: PMC383241  PMID: 220612

Abstract

Many transformed and malignant cells, unlike normal cells, do not grow when methionine in the growth medium is replaced by its immediate precursor homocysteine [Chello, P. & Bertino, J. (1973) Cancer Res. 33, 1898-1904 and Hoffman, R. & Erbe, R. (1976) Proc. Natl. Acad. Sci. USA 73, 1523-1527]. Rare cells from those populations revert to methionine independence [Hoffman, R., Jacobsen, S. & Erbe, R. (1978) Biochem. Biophys. Res. Commun. 82, 228-234]. We report here that methionine-independent revertants of both human fibroblasts transformed by simian virus 40 and malignant rat fibroblasts concomitantly revert for some of the properties associated with the transformed state. Of the 13 methionine-independent revertants described here, 5 showed increased anchorage dependence as reflected by reduced cloning efficiences in methylcellulose; 8 showed an increased serum requirement for optimal growth; 8 showed decreased cell density in medium containing high serum; and 3 altered their cell morphology significantly. Eight of the 13 have increased chromosome numbers. All lines tested contained immunologically identifiable tumor antigen of simian virus 40. Thus by selecting for methionine independence it is possible to select for heterogeneous transformation revertants, indicating further a relationship between altered methionine metabolism and oncogenic transformation. Therefore a positive metabolic method to select for transformation revertants has been developed, and its use has resulted in selection of human transformation revertants.

Keywords: positive metabolic selection, human transformation revertants

Full text

PDF
1313

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACK P. H., ROWE W. P., TURNER H. C., HUEBNER R. J. A SPECIFIC COMPLEMENT-FIXING ANTIGEN PRESENT IN SV40 TUMOR AND TRANSFORMED CELLS. Proc Natl Acad Sci U S A. 1963 Dec;50:1148–1156. doi: 10.1073/pnas.50.6.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bouck N., Beales N., Shenk T., Berg P., di Mayorca G. New region of the simian virus 40 genome required for efficient viral transformation. Proc Natl Acad Sci U S A. 1978 May;75(5):2473–2477. doi: 10.1073/pnas.75.5.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chello P. L., Bertino J. R. Dependence of 5-methyltetrahydrofolate utilization by L5178Y murine leukemia cells in vitro on the presence of hydroxycobalamin and transcobalamin II. Cancer Res. 1973 Aug;33(8):1898–1904. [PubMed] [Google Scholar]
  4. Culp L. A., Black P. H. Contact-inhibited revertant cell lines isolated from simian virus 40-transformed cells. 3. Concanavalin A-selected revertant cells. J Virol. 1972 Apr;9(4):611–620. doi: 10.1128/jvi.9.4.611-620.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Freedman V. H., Shin S. I. Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell. 1974 Dec;3(4):355–359. doi: 10.1016/0092-8674(74)90050-6. [DOI] [PubMed] [Google Scholar]
  6. GIRARDI A. J., JENSEN F. C., KOPROWSKI H. SV40-INDUCED TRANFORMATION OF HUMAN DIPLOID CELLS: CRISIS AND RECOVERY. J Cell Physiol. 1965 Feb;65:69–83. doi: 10.1002/jcp.1030650110. [DOI] [PubMed] [Google Scholar]
  7. Halpern B. C., Clark B. R., Hardy D. N., Halpern R. M., Smith R. A. The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1133–1136. doi: 10.1073/pnas.71.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hitotsumachi S., Rabinowitz Z., Sachs L. Ciromosomal control of reversion in transformed cells. Nature. 1971 Jun 25;231(5304):511–514. doi: 10.1038/231511a0. [DOI] [PubMed] [Google Scholar]
  9. Hoffman R. M., Erbe R. W. High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U S A. 1976 May;73(5):1523–1527. doi: 10.1073/pnas.73.5.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoffman R. M., Jacobsen S. J., Erbe R. W. Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts. Biochem Biophys Res Commun. 1978 May 15;82(1):228–234. doi: 10.1016/0006-291x(78)90600-9. [DOI] [PubMed] [Google Scholar]
  11. Kreis W., Goodenow M. Methionine requirement and replacement by homocysteine in tissue cultures of selected rodent and human malignant and normal cells. Cancer Res. 1978 Aug;38(8):2259–2262. [PubMed] [Google Scholar]
  12. Naylor S. L., Busby L. L., Klebe R. J. Biochemical selection systems for mammalian cells: the essential amino acids. Somatic Cell Genet. 1976 Mar;2(2):93–111. doi: 10.1007/BF01542624. [DOI] [PubMed] [Google Scholar]
  13. Osborn M., Weber K. Simian virus 40 gene A function and maintenance of transformation. J Virol. 1975 Mar;15(3):636–644. doi: 10.1128/jvi.15.3.636-644.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pollack R., Wolman S., Vogel A. Reversion of virus-transformed cell lines: hyperploidy accompanies retention of viral genes. Nature. 1970 Dec 5;228(5275):938–passim. doi: 10.1038/228938a0. [DOI] [PubMed] [Google Scholar]
  15. Sleigh M. J., Topp W. C., Hanich R., Sambrook J. F. Mutants of SV40 with an altered small t protein are reduced in their ability to transform cells. Cell. 1978 May;14(1):79–88. doi: 10.1016/0092-8674(78)90303-3. [DOI] [PubMed] [Google Scholar]
  16. Todaro G. J., Meyer C. A. Transformation assay for murine sarcoma viruses using a Simian virus 40-transformed human cell line. J Natl Cancer Inst. 1974 Jan;52(1):167–171. doi: 10.1093/jnci/52.1.167. [DOI] [PubMed] [Google Scholar]
  17. Vogel A., Pollack R. Isolation and characterization of revertant cell lines. IV. Direct selection of serum-revertant sublines of SV40-transformed 3T3 mouse cells. J Cell Physiol. 1973 Oct;82(2):189–198. doi: 10.1002/jcp.1040820207. [DOI] [PubMed] [Google Scholar]
  18. Weiss M. C. Further studies on loss of T-antigen from somatic hybrids between mouse cells and SV40-transformed human cells. Proc Natl Acad Sci U S A. 1970 May;66(1):79–86. doi: 10.1073/pnas.66.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilson M. J., Poirier L. A. An increased requirement for methionine by transformed rat liver epithelial cells in vitro. Exp Cell Res. 1978 Feb;111(2):397–400. doi: 10.1016/0014-4827(78)90184-2. [DOI] [PubMed] [Google Scholar]
  20. Yamamoto T., Rabinowitz Z., Sachs L. Identification of the chromosomes that control malignancy. Nat New Biol. 1973 Jun 20;243(129):247–250. doi: 10.1038/newbio243247a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES