Abstract
Tetrahedral intermediates in the reaction of elastase with specific di- and tripeptide p-nitroanilide substrates have been detected, accumulated, and stabilized at high pH by using subzero temperatures and fluid aqueous/organic cryosolvents. The tetrahedral adducts are characterized by spectra with lambda max of 359 +/- 2 nm, compared with thata of 380 nm for p-nitroaniline and 315-320 nm for the substrates. The maximal concentration of intermediate that could be accumulated varied with the different substrates from 40 to 100% of the active enzyme present. The pH dependence of the reactions indicated that formation of the tetrahedral intermediates was rate-limiting at low pH (pK* = 7.0 at -39 degrees C) and that collapse to the acylenzymes was rate-determining at high pH. When corrected for the effect of temperature and cosolvent, the rate of intermediate formation was in good agreement with that measured at 25 degrees C in aqueous solution by stopped-flow techniques.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balny C., Bieth J. G. Kinetic detection of intermediates during the elastase-catalyzed hydrolysis of succinyl-trialanine-p-nitroanilide at subzero temperatures. FEBS Lett. 1977 Aug 1;80(1):182–186. doi: 10.1016/0014-5793(77)80435-3. [DOI] [PubMed] [Google Scholar]
- Bender M. L., Begué-Cantón M. L., Blakeley R. L., Brubacher L. J., Feder J., Gunter C. R., Kézdy F. J., Killheffer J. V., Jr, Marshall T. H., Miller C. G. The determination of the concentration of hydrolytic enzyme solutions: alpha-chymotrypsin, trypsin, papain, elastase, subtilisin, and acetylcholinesterase. J Am Chem Soc. 1966 Dec 20;88(24):5890–5913. doi: 10.1021/ja00976a034. [DOI] [PubMed] [Google Scholar]
- Drenth J., Kalk K. H., Swen H. M. Binding of chloromethyl ketone substrate analogues to crystalline papain. Biochemistry. 1976 Aug 24;15(17):3731–3738. doi: 10.1021/bi00662a014. [DOI] [PubMed] [Google Scholar]
- Fastrez J., Fersht A. R. Mechanism of chymotrypsin. Structure, reactivity, and nonproductive binding relationships. Biochemistry. 1973 Mar 13;12(6):1067–1074. doi: 10.1021/bi00730a008. [DOI] [PubMed] [Google Scholar]
- Fink A. L., Ahmed A. I. Formation of stable crystalline enzyme-substrate intermediates at sub-zero temperatures. Nature. 1976 Sep 23;263(5575):294–297. doi: 10.1038/263294a0. [DOI] [PubMed] [Google Scholar]
- Fink A. L. Cryoenzymology of chymotrypsin: the detection of intermediates in the catalysis of a specific anilide substrate. Biochemistry. 1976 Apr 6;15(7):1580–1586. doi: 10.1021/bi00652a031. [DOI] [PubMed] [Google Scholar]
- Fink A. L. Cryoenzymology: the use of sub-zero temperatures and fluid solutions in the study of enzyme mechanisms. J Theor Biol. 1976 Sep 21;61(2):419–445. doi: 10.1016/0022-5193(76)90028-x. [DOI] [PubMed] [Google Scholar]
- Hanai K. A conformational change in the benzeneboronic acid-alpha-chymotrypsin complex. Evidence for a conformational change in a tetrahedral adduct of alpha-chymotrypsin. J Biochem. 1977 May;81(5):1273–1283. [PubMed] [Google Scholar]
- Henderson R., Wright C. S., Hess G. P., Blow D. M. -Chymotrypsin: what can we learn about catalysis from x-ray diffraction? Cold Spring Harb Symp Quant Biol. 1972;36:63–70. doi: 10.1101/sqb.1972.036.01.011. [DOI] [PubMed] [Google Scholar]
- Hirohara H., Philipp M., Bender M. L. Binding rates, O--S substitution effects, and the pH dependence of chymotrypsin reactions. Biochemistry. 1977 Apr 19;16(8):1573–1580. doi: 10.1021/bi00627a007. [DOI] [PubMed] [Google Scholar]
- Hui-Bon-Hoa G., Douzou P. Ionic strength and protonic activity of supercooled solutions used in experiments with enzyme systems. J Biol Chem. 1973 Jul 10;248(13):4649–4654. [PubMed] [Google Scholar]
- Hunkapiller M. W., Forgac M. D., Richards J. H. Mechanism of action of serine proteases: tetrahedral intermediate and concerted proton transfer. Biochemistry. 1976 Dec 14;15(25):5581–5588. doi: 10.1021/bi00670a024. [DOI] [PubMed] [Google Scholar]
- Hunkapiller M. W., Smallcombe S. H., Whitaker D. R., Richards J. H. Carbon nuclear magnetic resonance studies of the histidine residue in alpha-lytic protease. Implications for the catalytic mechanism of serine proteases. Biochemistry. 1973 Nov 6;12(23):4732–4743. doi: 10.1021/bi00747a028. [DOI] [PubMed] [Google Scholar]
- Koeppe R. E., 2nd, Stroud R. M. Mechanism of hydrolysis by serine proteases: direct determination of the pKa's of aspartyl-102 and aspartyl-194 in bovine trypsin using difference infrared spectroscopy. Biochemistry. 1976 Aug 10;15(16):3450–3458. doi: 10.1021/bi00661a009. [DOI] [PubMed] [Google Scholar]
- Lucas E. C., Caplow M., Bush K. J. Chymotrypsin catalysis. Evidence for a new intermediate. 3. J Am Chem Soc. 1973 Apr 18;95(8):2670–2673. doi: 10.1021/ja00789a043. [DOI] [PubMed] [Google Scholar]
- Markley J. L., Ibañez I. B. Zymogen activation in serine proteinases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin Aalpha. Biochemistry. 1978 Oct 31;17(22):4627–4640. doi: 10.1021/bi00615a008. [DOI] [PubMed] [Google Scholar]
- O'Leary M. H., Kluetz M. D. Nitrogen isotope effects on the chymotrypsin-catalyzed hydrolysis of N-acetyl-L-tryptophanamide. J Am Chem Soc. 1972 May 17;94(10):3585–3589. doi: 10.1021/ja00765a055. [DOI] [PubMed] [Google Scholar]
- O'Leary M. H., Urberg M., Young A. P. Nitrogen isotope effects on the papain-catalyzed hydrolysis of N-benzoyl-L-argininamide. Biochemistry. 1974 May 7;13(10):2077–2081. doi: 10.1021/bi00707a012. [DOI] [PubMed] [Google Scholar]
- Petkov D. D. Detection of a tetrahedral intermediate in the trypsin-catalysed hydrolysis of specific ring-activated anilides. Biochim Biophys Acta. 1978 Apr 12;523(2):538–541. doi: 10.1016/0005-2744(78)90057-8. [DOI] [PubMed] [Google Scholar]
- Robertus J. D., Kraut J., Alden R. A., Birktoft J. J. Subtilisin; a stereochemical mechanism involving transition-state stabilization. Biochemistry. 1972 Nov 7;11(23):4293–4303. doi: 10.1021/bi00773a016. [DOI] [PubMed] [Google Scholar]
