Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Apr;76(4):1716–1720. doi: 10.1073/pnas.76.4.1716

In vitro regulation of DNA-dependent synthesis of Escherichia coli ribosomal protein L12.

G Goldberg, P Caldwell, H Weissbach, N Brot
PMCID: PMC383461  PMID: 287012

Abstract

The DNA of the transducing phage lambdarifd18 contains, among others, the genes for the ribosomal proteins L11, L1, L10, and L12 and the beta and beta' subunits of RNA polymerase (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6). In a coupled in vitro protein-synthesis system, lambdarifd18 DNA directs the synthesis of about four to five molecules of L12 per molecule of L10. This is consistent with the finding that there are four copies of L12 per ribosome. The ratio of L12/L10 was also examined from an EcoRI fragment of lambdarifd18 that contains the L10 gene and about 50% of the L12 gene. A significantly lower ratio of truncated L12/L10 was observed compared to the intact phage. The binding of RNA polymerase to various lambdarifd18 DNA restriction fragments was used to locate possible promoter sites. These binding experiments suggest that the beta and beta' subunits of RNA polymerase are cotranscribed with at least ribosomal protein L12 and, also, that there may be an additional promoter site for the L12 gene within the structural gene for L10.

Full text

PDF
1716

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blattner F. R., Williams B. G., Blechl A. E., Denniston-Thompson K., Faber H. E., Furlong L., Grunwald D. J., Kiefer D. O., Moore D. D., Schumm J. W. Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science. 1977 Apr 8;196(4286):161–169. doi: 10.1126/science.847462. [DOI] [PubMed] [Google Scholar]
  2. Brot N., Marcel R., Yamasaki E., Weissbach H. Further studies on the role of 50 S ribosomal proteins in protein synthesis. J Biol Chem. 1973 Oct 25;248(20):6952–6956. [PubMed] [Google Scholar]
  3. Chu F., Caldwell P., Weissbach H., Brot N. mRNA-dependent in vitro synthesis of ribosomal proteins L12 and L10 and elongation factor Tu. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5387–5391. doi: 10.1073/pnas.74.12.5387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chu F., Kung H. F., Caldwell P., Weissbach H., Brot N. DNA dependent synthesis of protein L12 from escherichia coli ribosomes, in vitro. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3156–3159. doi: 10.1073/pnas.73.9.3156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chu F., Miller D. L., Schulz T., Weissbach H., Brot N. DNA-directed in vitro synthesis of elongation factor Tu. Biochem Biophys Res Commun. 1976 Dec 20;73(4):917–927. doi: 10.1016/0006-291x(76)90209-6. [DOI] [PubMed] [Google Scholar]
  6. Dovgas N. V., Vinokurov L. M., Velmoga I. S., Alakhov Y. B., Ovchinnikov Y. A. The primary structure of protein L10 from Escherichia coli ribosomes. FEBS Lett. 1976 Aug 1;67(1):58–61. doi: 10.1016/0014-5793(76)80870-8. [DOI] [PubMed] [Google Scholar]
  7. Fiil N. P., von Meyenburg K., Friesen J. D. Accumulation and turnover of guanosine tetraphosphate in Escherichia coli. J Mol Biol. 1972 Nov 28;71(3):769–783. doi: 10.1016/s0022-2836(72)80037-8. [DOI] [PubMed] [Google Scholar]
  8. Kung H., Spears C., Weissbach H. Purification and properties of a soluble factor required for the deoxyribonucleic acid-directed in vitro synthesis of beta-galactosidase. J Biol Chem. 1975 Feb 25;250(4):1556–1562. [PubMed] [Google Scholar]
  9. Lindahl L., Post L., Nomura M. DNA-dependent in vitro synthesis of fibosomal proteins, protein elongation factors, and RNA polymerase subunit alpha: inhibition by ppGpp. Cell. 1976 Nov;9(3):439–448. doi: 10.1016/0092-8674(76)90089-1. [DOI] [PubMed] [Google Scholar]
  10. Lindahl S., Yamamoto M., Nomura M. Mapping of a cluster of genes for components of the transcriptional and translational machineries of Escherichia coli. J Mol Biol. 1977 Jan 5;109(1):23–47. doi: 10.1016/s0022-2836(77)80044-2. [DOI] [PubMed] [Google Scholar]
  11. Okamoto T., Sugimoto K., Sugisaki H., Takanami M. Studies on bacteriophage fd DNA. II. Localization of RNA initiation sites on the cleavage map of the fd genome. J Mol Biol. 1975 Jun 15;95(1):33–44. doi: 10.1016/0022-2836(75)90333-2. [DOI] [PubMed] [Google Scholar]
  12. Reiness G., Yang H. L., Zubay G., Cashel M. Effects of guanosine tetraphosphate on cell-free synthesis of Escherichia coli ribosomal RNA and other gene products. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2881–2885. doi: 10.1073/pnas.72.8.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shinnick T. M., Lund E., Smithies O., Blattner F. R. Hybridization of labeled RNA to DNA in agarose gels. Nucleic Acids Res. 1975 Oct;2(10):1911–1929. doi: 10.1093/nar/2.10.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tanaka T., Weisblum B., Schnös M., Inman R. Construction and characterization of a chimeric plasmid composed of DNA Pfrom Escherichia coli and Drosophila melanogaster. Biochemistry. 1975 May 20;14(10):2064–2072. doi: 10.1021/bi00681a005. [DOI] [PubMed] [Google Scholar]
  15. Terhorst C., Möller W., Laursen R., Wittmann-Liebold B. Amino acid sequence of a 50 S ribosomal protein involved in both EFG and EFT dependent GTP-hydrolysis. FEBS Lett. 1972 Dec 15;28(3):325–328. doi: 10.1016/0014-5793(72)80742-7. [DOI] [PubMed] [Google Scholar]
  16. Watson R. J., Parker J., Fiil N. P., Flaks J. G., Friesen J. D. New chromosomal location for structural genes of ribosomal proteins. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2765–2769. doi: 10.1073/pnas.72.7.2765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yamamoto M., Nomura M. Contranscription of genes for RNA polymerase subunits beta and beta' with genes for ribosomal proteins in Escherichia coli. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3891–3895. doi: 10.1073/pnas.75.8.3891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. van Ooyen A. J., Gruber M., Jorgensen P. The mechanism of action of ppGpp on rRNA synthesis in vitro. Cell. 1976 May;8(1):123–128. doi: 10.1016/0092-8674(76)90193-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES