Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Apr;76(4):1882–1886. doi: 10.1073/pnas.76.4.1882

Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells.

P A Jones
PMCID: PMC383496  PMID: 377289

Abstract

Cloned bovine endothelial cells were grown on a preformed layer of cultured rat smooth muscle cells that contained large amounts of connective tissue proteins. The successful growth of the endothelial cells was dependent upon the addition of more than 2.5 x 10(4) cells per cm2, and the final density reached was approximately 2.5 times higher than that obtained for the same cells growing on plastic. The endothelial cells anchored more firmly to the smooth muscle cells than to plastic, and electron microscopy showed the existence of an irregular, dense, basal lamina-like structure between the two cell types. Biochemical analysis of the lamina produced by the endothelial cells in isolation demonstrated the presence of collagen and two fucosylated glycoproteins. The structure produced, which has some of the characteristics of a blood vessel wall, was stable for several months in culture and has many potential applications.

Full text

PDF
1882

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booyse F. M., Sedlak B. J., Rafelson M. E., Jr Culture of arterial endothelial cells: characterization and growth of bovine aortic cells. Thromb Diath Haemorrh. 1975 Dec 15;34(3):825–839. [PubMed] [Google Scholar]
  2. Foster J. A., Mecham R. P., Rich C. B., Cronin M. F., Levine A., Imberman M., Salcedo L. L. Proelastin. Synthesis in cultured smooth muscle cells. J Biol Chem. 1978 Apr 25;253(8):2797–2803. [PubMed] [Google Scholar]
  3. Gimbrone M. A., Jr, Cotran R. S., Folkman J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol. 1974 Mar;60(3):673–684. doi: 10.1083/jcb.60.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gospodarowicz D., Greenburg G., Bialecki H., Zetter B. R. Factors involved in the modulation of cell proliferation in vivo and in vitro: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells. In Vitro. 1978 Jan;14(1):85–118. doi: 10.1007/BF02618177. [DOI] [PubMed] [Google Scholar]
  5. Gospodarowicz D., Moran J., Braun D., Birdwell C. Clonal growth of bovine vascular endothelial cells: fibroblast growth factor as a survival agent. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4120–4124. doi: 10.1073/pnas.73.11.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Howard B. V., Macarak E. J., Gunson D., Kefalides N. A. Characterization of the collagen synthesized by endothelial cells in culture. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2361–2364. doi: 10.1073/pnas.73.7.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jaffe E. A., Hoyer L. W., Nachman R. L. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Invest. 1973 Nov;52(11):2757–2764. doi: 10.1172/JCI107471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jaffe E. A., Minick C. R., Adelman B., Becker C. G., Nachman R. Synthesis of basement membrane collagen by cultured human endothelial cells. J Exp Med. 1976 Jul 1;144(1):209–225. doi: 10.1084/jem.144.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jaffe E. A., Mosher D. F. Synthesis of fibronectin by cultured human endothelial cells. J Exp Med. 1978 Jun 1;147(6):1779–1791. doi: 10.1084/jem.147.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jones P. A., Scott-Burden T. Activated macrophages digest the extracellular matrix proteins produced by cultured cells. Biochem Biophys Res Commun. 1979 Jan 15;86(1):71–77. doi: 10.1016/0006-291x(79)90383-8. [DOI] [PubMed] [Google Scholar]
  12. Jones P. A., Scott-Burden T., Gevers W. Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells. Proc Natl Acad Sci U S A. 1979 Jan;76(1):353–357. doi: 10.1073/pnas.76.1.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES