Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Sep 17;93(19):10151–10155. doi: 10.1073/pnas.93.19.10151

Dual-function regulators: the cAMP receptor protein and the CytR regulator can act either to repress or to activate transcription depending on the context.

P B Rasmussen 1, B Holst 1, P Valentin-Hansen 1
PMCID: PMC38352  PMID: 8816767

Abstract

Studies of gene regulation have revealed that several transcriptional regulators can switch between activator and repressor depending upon both the promoter and the cellular context. A relatively simple prokaryotic example is illustrated by the Escherichia coli CytR regulon. In this system, the cAMP receptor protein (CRP) assists the binding of RNA polymerase as well as a specific negative regulator, CytR. Thus, CRP functions either as an activator or as a corepressor. Here we show that, depending on promoter architecture, the CRP/CytR nucleoprotein complex has opposite effects on transcription. When acting from a site close to the DNA target for RNA polymerase, CytR interacts with CRP to repress transcription, whereas an interaction with CRP from appropriately positioned upstream binding sites can result in formation of a huge preinitiation complex and transcriptional activation. Based on recent results about CRP-mediated regulation of transcription initiation and the finding that CRP possesses discrete surface-exposed patches for protein-protein interaction with RNA polymerase and CytR, a molecular model for this dual regulation is discussed.

Full text

PDF
10151

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckwith J., Grodzicker T., Arditti R. Evidence for two sites in the lac promoter region. J Mol Biol. 1972 Aug 14;69(1):155–160. doi: 10.1016/0022-2836(72)90031-9. [DOI] [PubMed] [Google Scholar]
  2. Bell A., Gaston K., Williams R., Chapman K., Kolb A., Buc H., Minchin S., Williams J., Busby S. Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription. Nucleic Acids Res. 1990 Dec 25;18(24):7243–7250. doi: 10.1093/nar/18.24.7243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Busby S., West D., Lawes M., Webster C., Ishihama A., Kolb A. Transcription activation by the Escherichia coli cyclic AMP receptor protein. Receptors bound in tandem at promoters can interact synergistically. J Mol Biol. 1994 Aug 19;241(3):341–352. doi: 10.1006/jmbi.1994.1511. [DOI] [PubMed] [Google Scholar]
  4. Chen Y., Ebright Y. W., Ebright R. H. Identification of the target of a transcription activator protein by protein-protein photocrosslinking. Science. 1994 Jul 1;265(5168):90–92. doi: 10.1126/science.8016656. [DOI] [PubMed] [Google Scholar]
  5. Collado-Vides J., Magasanik B., Gralla J. D. Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev. 1991 Sep;55(3):371–394. doi: 10.1128/mr.55.3.371-394.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dandanell G., Valentin-Hansen P., Larsen J. E., Hammer K. Long-range cooperativity between gene regulatory sequences in a prokaryote. 1987 Feb 26-Mar 4Nature. 325(6107):823–826. doi: 10.1038/325823a0. [DOI] [PubMed] [Google Scholar]
  7. Ebright R. H. Transcription activation at Class I CAP-dependent promoters. Mol Microbiol. 1993 May;8(5):797–802. doi: 10.1111/j.1365-2958.1993.tb01626.x. [DOI] [PubMed] [Google Scholar]
  8. Eschenlauer A. C., Reznikoff W. S. Escherichia coli catabolite gene activator protein mutants defective in positive control of lac operon transcription. J Bacteriol. 1991 Aug;173(16):5024–5029. doi: 10.1128/jb.173.16.5024-5029.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frankel A. D., Kim P. S. Modular structure of transcription factors: implications for gene regulation. Cell. 1991 May 31;65(5):717–719. doi: 10.1016/0092-8674(91)90378-c. [DOI] [PubMed] [Google Scholar]
  10. Holst B., Søgaard-Andersen L., Pedersen H., Valentin-Hansen P. The cAMP-CRP/CytR nucleoprotein complex in Escherichia coli: two pairs of closely linked binding sites for the cAMP-CRP activator complex are involved in combinatorial regulation of the cdd promoter. EMBO J. 1992 Oct;11(10):3635–3643. doi: 10.1002/j.1460-2075.1992.tb05448.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson A. D. The price of repression. Cell. 1995 Jun 2;81(5):655–658. doi: 10.1016/0092-8674(95)90524-3. [DOI] [PubMed] [Google Scholar]
  12. Joung J. K., Le L. U., Hochschild A. Synergistic activation of transcription by Escherichia coli cAMP receptor protein. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3083–3087. doi: 10.1073/pnas.90.7.3083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kolb A., Busby S., Buc H., Garges S., Adhya S. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 1993;62:749–795. doi: 10.1146/annurev.bi.62.070193.003533. [DOI] [PubMed] [Google Scholar]
  14. Møllegaard N. E., Rasmussen P. B., Valentin-Hansen P., Nielsen P. E. Characterization of promoter recognition complexes formed by CRP and CytR for repression and by CRP and RNA polymerase for activation of transcription on the Escherichia coli deoP2 promoter. J Biol Chem. 1993 Aug 15;268(23):17471–17477. [PubMed] [Google Scholar]
  15. Pedersen H., Dall J., Dandanell G., Valentin-Hansen P. Gene-regulatory modules in Escherichia coli: nucleoprotein complexes formed by cAMP-CRP and CytR at the nupG promoter. Mol Microbiol. 1995 Sep;17(5):843–853. doi: 10.1111/j.1365-2958.1995.mmi_17050843.x. [DOI] [PubMed] [Google Scholar]
  16. Pedersen H., Søgaard-Andersen L., Holst B., Gerlach P., Bremer E., Valentin-Hansen P. cAMP-CRP activator complex and the CytR repressor protein bind co-operatively to the cytRP promoter in Escherichia coli and CytR antagonizes the cAMP-CRP-induced DNA bend. J Mol Biol. 1992 Sep 20;227(2):396–406. doi: 10.1016/0022-2836(92)90896-r. [DOI] [PubMed] [Google Scholar]
  17. Roberts S. G., Green M. R. Transcription. Dichotomous regulators. Nature. 1995 May 11;375(6527):105–106. doi: 10.1038/375105a0. [DOI] [PubMed] [Google Scholar]
  18. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science. 1993 Nov 26;262(5138):1407–1413. doi: 10.1126/science.8248780. [DOI] [PubMed] [Google Scholar]
  19. Savery N., Rhodius V., Busby S. Protein-protein interactions during transcription activation: the case of the Escherichia coli cyclic AMP receptor protein. Philos Trans R Soc Lond B Biol Sci. 1996 Apr 29;351(1339):543–550. doi: 10.1098/rstb.1996.0053. [DOI] [PubMed] [Google Scholar]
  20. Schaeffer F., Kolb A., Buc H. Point mutations change the thermal denaturation profile of a short DNA fragment containing the lactose control elements. Comparison between experiment and theory. EMBO J. 1982;1(1):99–105. doi: 10.1002/j.1460-2075.1982.tb01131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Søgaard-Andersen L., Mironov A. S., Pedersen H., Sukhodelets V. V., Valentin-Hansen P. Single amino acid substitutions in the cAMP receptor protein specifically abolish regulation by the CytR repressor in Escherichia coli. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4921–4925. doi: 10.1073/pnas.88.11.4921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Søgaard-Andersen L., Valentin-Hansen P. Protein-protein interactions in gene regulation: the cAMP-CRP complex sets the specificity of a second DNA-binding protein, the CytR repressor. Cell. 1993 Nov 5;75(3):557–566. doi: 10.1016/0092-8674(93)90389-8. [DOI] [PubMed] [Google Scholar]
  23. Valentin-Hansen P., Søgaard-Andersen L., Pedersen H. A flexible partnership: the CytR anti-activator and the cAMP-CRP activator protein, comrades in transcription control. Mol Microbiol. 1996 May;20(3):461–466. doi: 10.1046/j.1365-2958.1996.5341056.x. [DOI] [PubMed] [Google Scholar]
  24. Zhou Y., Busby S., Ebright R. H. Identification of the functional subunit of a dimeric transcription activator protein by use of oriented heterodimers. Cell. 1993 Apr 23;73(2):375–379. doi: 10.1016/0092-8674(93)90236-j. [DOI] [PubMed] [Google Scholar]
  25. Zhou Y., Pendergrast P. S., Bell A., Williams R., Busby S., Ebright R. H. The functional subunit of a dimeric transcription activator protein depends on promoter architecture. EMBO J. 1994 Oct 3;13(19):4549–4557. doi: 10.1002/j.1460-2075.1994.tb06776.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhou Y., Zhang X., Ebright R. H. Identification of the activating region of catabolite gene activator protein (CAP): isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6081–6085. doi: 10.1073/pnas.90.13.6081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zou C., Fujita N., Igarashi K., Ishihama A. Mapping the cAMP receptor protein contact site on the alpha subunit of Escherichia coli RNA polymerase. Mol Microbiol. 1992 Sep;6(18):2599–2605. doi: 10.1111/j.1365-2958.1992.tb01437.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES