Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 May;76(5):2143–2147. doi: 10.1073/pnas.76.5.2143

Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA) site

Peter Wurmbach 1, Knud H Nierhaus 1
PMCID: PMC383553  PMID: 221915

Abstract

A method for binding tRNA to ribosomes, introduced by Watanabe [Watanabe, S. (1972) J. Mol. Biol. 67, 443-457], permits nonenzymatic binding of N-acetyl-Phe-tRNAPhe to either the ribosomal aminoacyl-tRNA (A) or peptidyl-tRNA (P) site with almost 100% specificity. We used this method to analyze a possible codon-anticodon interaction at the P site for NH2-blocked aminoacyl-tRNA and deacylated tRNA. N-Acetyl-Phe-tRNAPhe bound only to the P site of poly(U)-programmed 70S ribosomes, not to poly(A)-programmed ribosomes. The reverse mRNA dependence was found for N-acetyl-Lys-tRNALys. A series of purified deacylated tRNAs was analyzed in the poly(U) and poly(A) system for abilities to block P-site binding of N-acetyl-aminoacyl-tRNA and to direct the N-acetyl-aminoacyl-tRNA to the A site. Only the cognate tRNA was as effective as the bulk tRNA at a concentration of less than 1/20th that of bulk tRNA. tRNAs whose corresponding codons are identical or similar (same base character) in the first two codon positions showed a low but significant effect. The other noncognate tRNAs were unable to direct the NH2-blocked aminoacyl-tRNAs to the A site. Chlortetracycline interfered neither with the P-site binding of NH2-blocked aminoacyl-tRNA nor with the effects of deacylated tRNAs. Furthermore, the translocation blocker viomycin affected neither the binding to the A site nor that to the P site. These effects of both antibiotics indicate that both kinds of tRNA do not bind transiently in the A site before filling the P site and that codon-anticodon interaction takes place at the P site.

Keywords: tRNA binding, aminoacyl-tRNA site, puromycin reaction, tetracycline, viomycin

Full text

PDF
2143

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodley J. W., Zieve F. J. On the specificity of the two ribosomal binding sites: studies with tetracycline. Biochem Biophys Res Commun. 1969 Aug 7;36(3):463–468. doi: 10.1016/0006-291x(69)90587-7. [DOI] [PubMed] [Google Scholar]
  2. Dahlberg J. E., Kintner C., Lund E. Specific binding of tRNAMet to 23S rRNA of Escherichia coli. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1071–1075. doi: 10.1073/pnas.75.3.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Groot N., Panet A., Lapidot Y. The binding of purified Phe-tRNA and peptidyl-tRNA Phe to Escherichia coli ribosomes. Eur J Biochem. 1971 Dec 10;23(3):523–527. doi: 10.1111/j.1432-1033.1971.tb01649.x. [DOI] [PubMed] [Google Scholar]
  4. Grasmuk H., Nolan R. D., Drews J. The stimulation of labelled polynucleotide binding to Krebs II ascites and Escheria coli ribosomes by deacylated tRNAs. FEBS Lett. 1975 May 1;53(2):229–233. doi: 10.1016/0014-5793(75)80026-3. [DOI] [PubMed] [Google Scholar]
  5. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  6. Hamburger A. D., Lapidot Y., De Groot N. Thermal stability of poly(U)-tRNA-ribosome complexes with Phe-tRNA Phe and peptidyl-tRNA Phe . Eur J Biochem. 1973 Feb 1;32(3):576–583. doi: 10.1111/j.1432-1033.1973.tb02644.x. [DOI] [PubMed] [Google Scholar]
  7. Hapke B., Noll H. Structural dynamics of bacterial ribosomes. IV. Classification of ribosomes by subunit interaction. J Mol Biol. 1976 Jul 25;105(1):97–109. doi: 10.1016/0022-2836(76)90196-0. [DOI] [PubMed] [Google Scholar]
  8. Haseltine W. A., Block R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1564–1568. doi: 10.1073/pnas.70.5.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kuechler E., Rich A. Position of the initiator and peptidyl sites in the E. coli ribosome. Nature. 1970 Mar 7;225(5236):920–924. doi: 10.1038/225920a0. [DOI] [PubMed] [Google Scholar]
  10. Kyner D., Zabos P., Levin D. H. Inhibition of protein chain initiation in eukaryotes by deacylated transfer RNA and its reversibility by spermine. Biochim Biophys Acta. 1973 Oct 26;324(3):386–396. doi: 10.1016/0005-2787(73)90283-9. [DOI] [PubMed] [Google Scholar]
  11. Modolell J., Vázquez The inhibition of ribosomal translocation by viomycin. Eur J Biochem. 1977 Dec;81(3):491–497. doi: 10.1111/j.1432-1033.1977.tb11974.x. [DOI] [PubMed] [Google Scholar]
  12. Monro R. E., Cerná J., Marcker K. A. Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1042–1049. doi: 10.1073/pnas.61.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  14. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Steitz J. A., Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4734–4738. doi: 10.1073/pnas.72.12.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Suddath F. L., Quigley G. J., McPherson A., Sneden D., Kim J. J., Kim S. H., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0angstroms resolution. Nature. 1974 Mar 1;248(5443):20–24. doi: 10.1038/248020a0. [DOI] [PubMed] [Google Scholar]
  17. Ulbrich B., Mertens G., Nierhaus K. H. Cooperative binding of 3'-fragments of transfer ribonucleic acid to the peptidyltransferase center of Escherichia coli ribosomes. Arch Biochem Biophys. 1978 Sep;190(1):149–154. doi: 10.1016/0003-9861(78)90262-x. [DOI] [PubMed] [Google Scholar]
  18. Watanabe S. Interaction of siomycin with the acceptor site of Escherichia coli ribosomes. J Mol Biol. 1972 Jun 28;67(3):443–457. doi: 10.1016/0022-2836(72)90462-7. [DOI] [PubMed] [Google Scholar]
  19. Yamada T., Bierhaus K. H. Viomycin favours the formation of 70S ribosome couples. Mol Gen Genet. 1978 May 31;161(3):261–265. doi: 10.1007/BF00330999. [DOI] [PubMed] [Google Scholar]
  20. Zasloff M. Non-enzymic binding of formylmethionyl-transfer RNAf to Artemia salina ribosomes. J Mol Biol. 1973 Jun 5;76(4):445–453. doi: 10.1016/0022-2836(73)90483-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES