Abstract
A method for quantitative evaluation of transmembrane electrical potential and pH gradients across a subcellular compartment in an intact cell is presented. This approach has been applied in studies of mouse neuroblastoma C-1300 clone NB41A3, in which the transmembrane electrical potential and pH gradients and the mitochondrial volume percent have been determined. Membrane potentials and pH gradients were measured by two different methods. Equilibrium distributions of [3H]triphenylmethyl phosphonium and [14C]-thiocyanate ions gave calculated apparent membrane potentials of -77.0 and -29.6 mV, respectively, at 20-25°C; a value of -60.8 mV was obtained from microelectrode measurements. Equilibrium distributions of weak acids ([14C]trimethylacetic acid and 5,5-di[14C]methyl-2,4-oxazolidine-dione) and of weak bases ([14C]dimethylamine and [14C]trimethylamine) gave calculated upper and lower limits of the pH gradient (Δ pH = pHe - pHi) of -0.14 and -0.21 pH unit, respectively. The microelectrode measurements showed that the intracellular pH is within 0.1 of a pH unit or less of the extracellular pH over the extracellular pH range of 7.35-6.85. The mitochondrial volume percent calculated on the basis of the measured cytochrome c content is 5.6 ± 1.2% and compares well with estimates of 5.4 ± 1.1% obtained from 25 electron micrographs. Measurements of the cellular energetic parameters gave values within the range found in other cells and perfused organs. Comparison of the results of the microelectrode and equilibrium measurements permits estimates of the electrical potential and pH gradients across the mitochondrial membrane (mitochondria-to-cytoplasm gradients) to be made and suggests that the trans-mitochondrial membrane protonmotive force in the intact cell cannot be greater than -143 mV.
Keywords: lipophilic ions, weak acids and bases, microelectrode measurement, cytochrome c, [ATP]:[ADP][Pi] ratios
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altendorf K., Hirata H., Harold F. M. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli. J Biol Chem. 1975 Feb 25;250(4):1405–1412. [PubMed] [Google Scholar]
- Azzone G. F., Bragadin M., Pozzan T., Antone P. D. Proton electrochemical potential in steady state rat liver mitochondria. Biochim Biophys Acta. 1977 Jan 6;459(1):96–109. doi: 10.1016/0005-2728(77)90012-3. [DOI] [PubMed] [Google Scholar]
- Azzone G. F., Pozzan T., Massari S., Bragadin M. Proton electrochemical gradient and rate of controlled respiration in mitochondria. Biochim Biophys Acta. 1978 Feb 9;501(2):296–306. doi: 10.1016/0005-2728(78)90035-x. [DOI] [PubMed] [Google Scholar]
- Bakeeva L. E., Grinius L. L., Jasaitis A. A., Kuliene V. V., Levitsky D. O., Liberman E. A., Severina I. I., Skulachev V. P. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim Biophys Acta. 1970 Aug 4;216(1):13–21. doi: 10.1016/0005-2728(70)90154-4. [DOI] [PubMed] [Google Scholar]
- Bone J. M., Verth A., Lambie A. T. Intracellular acid-base heterogeneity in nucleated avian erythrocytes. Clin Sci Mol Med. 1976 Aug;51(2):189–196. doi: 10.1042/cs0510189. [DOI] [PubMed] [Google Scholar]
- Civan M. M. Intracellular activities of sodium and potassium. Am J Physiol. 1978 Apr;234(4):F261–F269. doi: 10.1152/ajprenal.1978.234.4.F261. [DOI] [PubMed] [Google Scholar]
- Clark J. B., Nicklas W. J. The metabolism of rat brain mitochondria. Preparation and characterization. J Biol Chem. 1970 Sep 25;245(18):4724–4731. [PubMed] [Google Scholar]
- DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Cespedes C., Christensen H. N. Complexity in valinomycin effects on amino acid transport. Biochim Biophys Acta. 1974 Feb 26;339(1):139–145. doi: 10.1016/0005-2736(74)90339-3. [DOI] [PubMed] [Google Scholar]
- Deutsch C. J., Kula T. Transmembrane electrical and pH gradients of Paracoccus denitrificans and their relationship to oxidative phosphorylation. FEBS Lett. 1978 Mar 1;87(1):145–151. doi: 10.1016/0014-5793(78)80154-9. [DOI] [PubMed] [Google Scholar]
- Dutton P. L., Wilson D. F. Redox potentiometry in mitochondrial and photosynthetic bioenergetics. Biochim Biophys Acta. 1974 Oct 31;346(2):165–212. doi: 10.1016/0304-4173(74)90008-1. [DOI] [PubMed] [Google Scholar]
- Erecińska M., Wilson D. F., Nishiki K. Homeostatic regulation of cellular energy metabolism: experimental characterization in vivo and fit to a model. Am J Physiol. 1978 Mar;234(3):C82–C89. doi: 10.1152/ajpcell.1978.234.3.C82. [DOI] [PubMed] [Google Scholar]
- Feldherr C. M. The effect of temperature on nuclear permeability. Experientia. 1973 May 15;29(5):546–547. doi: 10.1007/BF01926655. [DOI] [PubMed] [Google Scholar]
- Grinius L. L., Jasaitis A. A., Kadziauskas Y. P., Liberman E. A., Skulachev V. P., Topali V. P., Tsofina L. M., Vladimirova M. A. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta. 1970 Aug 4;216(1):1–12. doi: 10.1016/0005-2728(70)90153-2. [DOI] [PubMed] [Google Scholar]
- Grollman E. F., Lee G., Ambesi-Impiombato F. S., Meldolesi M. F., Aloj S. M., Coon H. G., Kaback H. R., Kohn L. D. Effects of thyrotropin on the thyroid cell membrane: hyperpolarization induced by hormone-receptor interaction. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2352–2356. doi: 10.1073/pnas.74.6.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guynn R. W., Veech R. L. The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate-citrate lyase reactions. J Biol Chem. 1973 Oct 25;248(20):6966–6972. [PubMed] [Google Scholar]
- Heinz E., Geck P., Pietrzyk C. Driving forces of amino acid transport in animal cells. Ann N Y Acad Sci. 1975 Dec 30;264:428–441. doi: 10.1111/j.1749-6632.1975.tb31501.x. [DOI] [PubMed] [Google Scholar]
- Hess H. H., Derr J. E. Assay of inorganic and organic phosphorus in the 0.1-5 nanomole range. Anal Biochem. 1975 Feb;63(2):607–613. doi: 10.1016/0003-2697(75)90388-7. [DOI] [PubMed] [Google Scholar]
- Hirata H., Altendorf K., Harold F. M. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1804–1808. doi: 10.1073/pnas.70.6.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lichtshtein D., Kaback H. R., Blume A. J. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. Proc Natl Acad Sci U S A. 1979 Feb;76(2):650–654. doi: 10.1073/pnas.76.2.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lombardi F. J., Reeves J. P., Short S. A., Kaback H. R. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles. Ann N Y Acad Sci. 1974 Feb 18;227:312–327. doi: 10.1111/j.1749-6632.1974.tb14396.x. [DOI] [PubMed] [Google Scholar]
- Miller A. G., Budd K. Evidence for a negative membrane potential and for movement of C1- against its electrochemical gradient in the ascomycete Neocosmospora vasinfecta. J Bacteriol. 1976 Dec;128(3):741–748. doi: 10.1128/jb.128.3.741-748.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer L. G., Civan M. M. Distribution of Na+, K+ and Cl- between nucleus and cytoplasm in Chironomus salivary gland cells. J Membr Biol. 1977 May 6;33(1-2):41–61. doi: 10.1007/BF01869511. [DOI] [PubMed] [Google Scholar]
- Palmer L. G., Civan M. M. Intracellular distribution of free potassium in Chironomus salivary glands. Science. 1975 Jun 27;188(4195):1321–1322. doi: 10.1126/science.1145200. [DOI] [PubMed] [Google Scholar]
- Schuldiner S., Kaback H. R. Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry. 1975 Dec 16;14(25):5451–5461. doi: 10.1021/bi00696a011. [DOI] [PubMed] [Google Scholar]
- Sies H., Akerboom T. P., Tager J. M. Mitochondrial and cytosolic NADPH systems and isocitrate dehydrogenase indicator metabolites during ureogensis from ammonia in isolated rat hepatocytes. Eur J Biochem. 1977 Jan;72(2):301–307. doi: 10.1111/j.1432-1033.1977.tb11253.x. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode. J Physiol. 1974 Apr;238(1):159–180. doi: 10.1113/jphysiol.1974.sp010516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeuthen T., Hiam R. C., Silver I. A. Microelectrode recording of ion activity in brain. Adv Exp Med Biol. 1974;50(0):145–156. doi: 10.1007/978-1-4615-9023-1_11. [DOI] [PubMed] [Google Scholar]
