Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 May;76(5):2278–2282. doi: 10.1073/pnas.76.5.2278

Macrophage response to concanavalin A: effect of surface crosslinking on the electrophoretic mobility distribution.

H R Petty, B R Ware
PMCID: PMC383582  PMID: 287068

Abstract

Electrophoretic light scattering (laser Doppler electrophoresis) has been employed to study the effects of concanavalin A (Con A) and succinyl-Con A on the electrophoretic mobility distribution of resident guinea pig peritoneal macrophages. Con A, a tetrameric lectin, decreases slightly the mean mobility and increases by approximately 3-fold the width of the electrophoretic mobility distribution of resident macrophages. This effect can be abolished by alpha-methyl-D-mannoside, a hapten sugar of Con A. These effects were present in both low (0.010 M) and high (physiological, 0.15 M) ionic-strength media. Since lower ionic strengths correspond to a larger Debye screening distance, these data suggest that the alterations in the electrophoretic mobility distribution are not restricted to the outer portion of the glycocalyx. Succinyl-Con A, a dimeric derivative, was found to have no effect on the mobility distribution. However, the mean mobility decreased and the width increased over 4-fold when succinyl-Con A-treated macrophages were exposed to anti-Con A. These observations indicate that cross-linking of Con A receptors is an important process in the electrokinetic alterations of the macrophage surface. These results may have important consequences for the elucidation of the details of the endocytic mechanism.

Full text

PDF
2278

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C., Davies P., De Petris S. Role of contractile microfilaments in macrophage movement and endocytosis. Nat New Biol. 1971 Aug 4;232(31):153–155. doi: 10.1038/newbio232153a0. [DOI] [PubMed] [Google Scholar]
  2. Axline S. G., Reaven E. P. Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B. Role of subplasmalemmal microfilaments. J Cell Biol. 1974 Sep;62(3):647–659. doi: 10.1083/jcb.62.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berlin R. D., Fera J. P. Changes in membrane microviscosity associated with phagocytosis: effects of colchicine. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1072–1076. doi: 10.1073/pnas.74.3.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berlin R. D., Oliver J. M., Walter R. J. Surface functions during Mitosis I: phagocytosis, pinocytosis and mobility of surface-bound Con A. Cell. 1978 Oct;15(2):327–341. doi: 10.1016/0092-8674(78)90002-8. [DOI] [PubMed] [Google Scholar]
  5. Blume P., Malley A., Knox R. J., Seaman G. V. Electrophoretic mobility as a sensitive probe of lectin-lymphocyte interaction. Nature. 1978 Jan 26;271(5643):378–380. doi: 10.1038/271378a0. [DOI] [PubMed] [Google Scholar]
  6. Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boxer L. A., Hedley-Whyte E. T., Stossel T. P. Neutrophil action dysfunction and abnormal neutrophil behavior. N Engl J Med. 1974 Nov 21;291(21):1093–1099. doi: 10.1056/NEJM197411212912101. [DOI] [PubMed] [Google Scholar]
  8. Bøyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol. 1976 Jun;Suppl 5:9–15. [PubMed] [Google Scholar]
  9. Daems W. T., Brederoo P. Electron microscopical studies on the structure, phagocytic properties, and peroxidatic activity of resident and exudate peritoneal macrophages in the guinea pig. Z Zellforsch Mikrosk Anat. 1973 Nov 5;144(2):247–297. doi: 10.1007/BF00307305. [DOI] [PubMed] [Google Scholar]
  10. Dunham P. B., Goldstein I. M., Weissmann G. Potassium and amino acid transport in human leukocytes exposed to phagocytic stimuli. J Cell Biol. 1974 Oct;63(1):215–226. doi: 10.1083/jcb.63.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edelman G. M. Surface modulation in cell recognition and cell growth. Science. 1976 Apr 16;192(4236):218–226. doi: 10.1126/science.769162. [DOI] [PubMed] [Google Scholar]
  12. Edelson P. J., Cohn Z. A. Effects of concanavalin A on mouse peritoneal macrophages. I. Stimulation of endocytic activity and inhibition of phago-lysosome formation. J Exp Med. 1974 Nov 1;140(5):1364–1386. doi: 10.1084/jem.140.5.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edelson P. J., Cohn Z. A. Effects of concanavalin A on mouse peritoneal macrophages. II. Metabolism of endocytized proteins and reversibility of the effects by mannose. J Exp Med. 1974 Nov 1;140(5):1387–1403. doi: 10.1084/jem.140.5.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Flanagan J., Koch G. L. Cross-linked surface Ig attaches to actin. Nature. 1978 May 25;273(5660):278–281. doi: 10.1038/273278a0. [DOI] [PubMed] [Google Scholar]
  15. Fraser A. R., Hemperly J. J., Wang J. L., Edelman G. M. Monovalent derivatives of concanavalin A. Proc Natl Acad Sci U S A. 1976 Mar;73(3):790–794. doi: 10.1073/pnas.73.3.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldman R. Induction of vacuolation in the mouse peritoneal macrophage by Concanavalin A. FEBS Lett. 1974 Sep 15;46(1):203–207. doi: 10.1016/0014-5793(74)80369-8. [DOI] [PubMed] [Google Scholar]
  17. Goldman R., Raz A. Concanavalin A and the in vitro induction in macrophages of vacuolation and lysosomal enzyme synthesis. Exp Cell Res. 1975 Dec;96(2):393–405. doi: 10.1016/0014-4827(75)90273-6. [DOI] [PubMed] [Google Scholar]
  18. Goldman R., Sharon N., Lotan R. A differential response elicited in macrophages on interaction with lectins. Exp Cell Res. 1976 May;99(2):408–422. doi: 10.1016/0014-4827(76)90598-x. [DOI] [PubMed] [Google Scholar]
  19. Goldman R. The effect of cytochalasin B and colchicine on concanavalin A induced vacuolation in mouse peritoneal macrophages. Exp Cell Res. 1976 May;99(2):385–394. doi: 10.1016/0014-4827(76)90596-6. [DOI] [PubMed] [Google Scholar]
  20. Gunther G. R., Wang J. L., Yahara I., Cunningham B. A., Edelman G. M. Concanavalin A derivatives with altered biological activities. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1012–1016. doi: 10.1073/pnas.70.4.1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaplan J. H., Uzgiris E. E. The detection of phytomitogen-induced changes in human lymphocyte surfaces by laser Doppler spectroscopy. J Immunol Methods. 1975 Jul;7(4):337–346. doi: 10.1016/0022-1759(75)90042-3. [DOI] [PubMed] [Google Scholar]
  22. Loor F., Forni L., Pernis B. The dynamic state of the lymphocyte membrane. Factors affecting the distribution and turnover of surface immunoglobulins. Eur J Immunol. 1972 Jun;2(3):203–212. doi: 10.1002/eji.1830020304. [DOI] [PubMed] [Google Scholar]
  23. Lutton J. D. The effect of phagocytosis and spreading on macrophage surface receptors for concanavalin A. J Cell Biol. 1973 Feb;56(2):611–617. doi: 10.1083/jcb.56.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mason R. J., Stossel T. P., Vaughan M. Lipids of alveolar macrophages, polymorphonuclear leukocytes, and their phagocytic vesicles. J Clin Invest. 1972 Sep;51(9):2399–2407. doi: 10.1172/JCI107052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
  26. Oliver J. M., Ukena T. E., Berlin R. D. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc Natl Acad Sci U S A. 1974 Feb;71(2):394–398. doi: 10.1073/pnas.71.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Romeo D., Zabucchi G., Rossi F. Reversible metabolic stimulation of polymorphonuclear leukocytes and macrophages by concanavalin A. Nat New Biol. 1973 May 23;243(125):111–112. [PubMed] [Google Scholar]
  28. Schekman R., Singer S. J. Clustering and endocytosis of membrane receptors can be induced in mature erythrocytes of neonatal but not adult humans. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4075–4079. doi: 10.1073/pnas.73.11.4075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schmidt M. E., Douglas S. D. Disappearance and recovery of human monocyte IgG receptor activity after phagocytosis. J Immunol. 1972 Oct;109(4):914–917. [PubMed] [Google Scholar]
  30. Schreiner G. F., Fujiwara K., Pollard T. D., Unanue E. R. Redistribution of myosin accompanying capping of surface Ig. J Exp Med. 1977 May 1;145(5):1393–1398. doi: 10.1084/jem.145.5.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schreiner G. F., Unanue E. R. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv Immunol. 1976;24:37–165. doi: 10.1016/s0065-2776(08)60329-6. [DOI] [PubMed] [Google Scholar]
  32. Skutelsky E., Danon D. Redistribution of surface anionic sites on the luminal front of blood vessel endothelium after interaction with polycationic ligand. J Cell Biol. 1976 Oct;71(1):232–241. doi: 10.1083/jcb.71.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Skutelsky E., Hardy B. Regeneration of plasmalemma and surface properties in macrophages. Exp Cell Res. 1976 Sep;101(2):337–345. doi: 10.1016/0014-4827(76)90386-4. [DOI] [PubMed] [Google Scholar]
  34. Smith C. W., Goldman A. S. Macrophages from human colostrum. Multinucleated giant cell formation by phytohemagglutinin and concanavalin A. Exp Cell Res. 1971 Jun;66(2):317–320. doi: 10.1016/0014-4827(71)90683-5. [DOI] [PubMed] [Google Scholar]
  35. Smolen J. E., Shohet S. B. Remodeling of granulocyte membrane fatty acids during phagocytosis. J Clin Invest. 1974 Mar;53(3):726–734. doi: 10.1172/JCI107611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smolen J. E., Weissmann G. Mg2+-ATPase as a membrane ecto-enzyme of human granulocytes. Inhibitors, activators and response to phagocytosis. Biochim Biophys Acta. 1978 Oct 4;512(3):525–538. doi: 10.1016/0005-2736(78)90162-1. [DOI] [PubMed] [Google Scholar]
  37. Steinman R. M., Brodie S. E., Cohn Z. A. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol. 1976 Mar;68(3):665–687. doi: 10.1083/jcb.68.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stossel T. P., Hartwig J. H. Interactions of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J Cell Biol. 1976 Mar;68(3):602–619. doi: 10.1083/jcb.68.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sundqvist K. G., Ehrnst A. Cytoskeletal control of surface membrane mobility. Nature. 1976 Nov 18;264(5583):226–231. doi: 10.1038/264226a0. [DOI] [PubMed] [Google Scholar]
  40. Tsan M. F., Berlin R. D. Effect of phagocytosis on membrane transport of nonelectrolytes. J Exp Med. 1971 Oct 1;134(4):1016–1035. doi: 10.1084/jem.134.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wioland M. Electrophoretic mobility of the thymocyte during endocytosis of concanavalin A. Cell Immunol. 1974 Jun;12(3):472–475. doi: 10.1016/0008-8749(74)90102-6. [DOI] [PubMed] [Google Scholar]
  42. Yahara I., Edelman G. M. Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci U S A. 1972 Mar;69(3):608–612. doi: 10.1073/pnas.69.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yakara I., Kakimoto-Sameshima F. Microtubule organization of lymphocytes and its modulation by patch and cap formation. Cell. 1978 Sep;15(1):251–259. doi: 10.1016/0092-8674(78)90100-9. [DOI] [PubMed] [Google Scholar]
  44. Yasaka T., Kambara T. Effect of concanavalin A and its succinylated derivative on the oxidative metabolism of guinea pig peritoneal macrophages. Biochim Biophys Acta. 1978 Apr 4;508(2):306–312. doi: 10.1016/0005-2736(78)90333-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES