Abstract
The transmission of complexity during DNA replication has been investigated to clarify the significance of this molecular property in a deterministic process. Complexity was equated with the amount of randomness within an ordered molecular structure and measured by the entropy of a posteriori probabilities for discrete (monomer sequences, atomic bonds) and continuous (torsion angle sequences) structural parameters in polynucleotides, proteins, and ligand molecules. A theoretical analysis revealed that sequence complexity decreases during transmission from DNA to protein. It was also found that sequence complexity limits the attainable complexity in the folding of a polypeptide chain and that a protein cannot interact with a ligand moiety of higher complexity. The analysis indicated, furthermore, that in any deterministic molecular process a cause possesses more complexity than its effect. This outcome broadly complies with Curie's symmetry principle. Results from an analysis of an extensive set of experimental data are presented; they corroborate these findings. It is suggested, therefore, that complexity governs the direction of order—order molecular transformations. Two biological implications are (i) replication of DNA in a stepwise, repetitive manner by a polymerase appears to be a necessary consequence of structural constraints imposed by complexity, and (ii) during evolution, increases in complexity had to involve a nondeterministic mechanism. This latter requirement apparently applied also to development of the first replicating system on earth.
Keywords: intramolecular aperiodicity, entropy measure, cause—effect relationship
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
- Burgess R. R. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6168–6176. [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
- Contreras R., Ysebaert M., Jou W. M., Fiers W. Bacteriophage Ms2 RNA: nucleotide sequence of the end of the a protein gene and the intercistronic region. Nat New Biol. 1973 Jan 24;241(108):99–101. doi: 10.1038/newbio241099a0. [DOI] [PubMed] [Google Scholar]
- Davidson E. H., Hough B. R. Genetic information in oocyte RNA. J Mol Biol. 1971 Mar 28;56(3):491–506. doi: 10.1016/0022-2836(71)90396-2. [DOI] [PubMed] [Google Scholar]
- Fiers W., Contreras R., Duerinck F., Haegeman G., Iserentant D., Merregaert J., Min Jou W., Molemans F., Raeymaekers A., Van den Berghe A. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature. 1976 Apr 8;260(5551):500–507. doi: 10.1038/260500a0. [DOI] [PubMed] [Google Scholar]
- Fiers W., Contreras R., Duerinck F., Haegmean G., Merregaert J., Jou W. M., Raeymakers A., Volckaert G., Ysebaert M., Van de Kerckhove J. A-protein gene of bacteriophage MS2. Nature. 1975 Jul 24;256(5515):273–278. doi: 10.1038/256273a0. [DOI] [PubMed] [Google Scholar]
- Finkelstein A. V., Ptitsyn O. B. Statistical analysis of the correlation among amino acid residues in helical, beta-structural and non-regular regions of globular proteins. J Mol Biol. 1971 Dec 28;62(3):613–624. doi: 10.1016/0022-2836(71)90160-4. [DOI] [PubMed] [Google Scholar]
- Gatlin L. L. The information content of DNA. J Theor Biol. 1966 Feb;10(2):281–300. doi: 10.1016/0022-5193(66)90127-5. [DOI] [PubMed] [Google Scholar]
- Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
- Kabat E. A., Wu T. T. The influence of nearest-neighbor amino acids on the conformation of the middle amino acid in proteins: comparison of predicted and experimental determination of -sheets in concanavalin A. Proc Natl Acad Sci U S A. 1973 May;70(5):1473–1477. doi: 10.1073/pnas.70.5.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornberg A. Active center of DNA polymerase. Science. 1969 Mar 28;163(3874):1410–1418. doi: 10.1126/science.163.3874.1410. [DOI] [PubMed] [Google Scholar]
- Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol. 1976 Jun 14;104(1):59–107. doi: 10.1016/0022-2836(76)90004-8. [DOI] [PubMed] [Google Scholar]
- Novak R. L., Doty P. Optical rotatory dispersion and circular dichroism studies on Escherichia coli ribonucleic acid polymerase. Biochemistry. 1970 Apr 14;9(8):1739–1743. doi: 10.1021/bi00810a012. [DOI] [PubMed] [Google Scholar]
- Pribnow D. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci U S A. 1975 Mar;72(3):784–788. doi: 10.1073/pnas.72.3.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz G. E., Barry C. D., Friedman J., Chou P. Y., Fasman G. D., Finkelstein A. V., Lim V. I., Pititsyn O. B., Kabat E. A., Wu T. T. Comparison of predicted and experimentally determined secondary structure of adenyl kinase. Nature. 1974 Jul 12;250(462):140–142. doi: 10.1038/250140a0. [DOI] [PubMed] [Google Scholar]
- Smith M., Brown N. L., Air G. M., Barrell B. G., Coulson A. R., Hutchison C. A., 3rd, Sanger F. DNA sequence at the C termini of the overlapping genes A and B in bacteriophage phi X174. Nature. 1977 Feb 24;265(5596):702–705. doi: 10.1038/265702a0. [DOI] [PubMed] [Google Scholar]
- Smith M. The first complete nucleotide sequencing of an organism's DNA. Am Sci. 1979 Jan-Feb;67(1):57–67. [PubMed] [Google Scholar]
- Straus N. A. Comparative DNA renaturation kinetics in amphibians. Proc Natl Acad Sci U S A. 1971 Apr;68(4):799–802. doi: 10.1073/pnas.68.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swift H. The organization of genetic material in eukaryotes: progress and prospects. Cold Spring Harb Symp Quant Biol. 1974;38:963–979. doi: 10.1101/sqb.1974.038.01.098. [DOI] [PubMed] [Google Scholar]
