Abstract
Studies were carried out to characterize the target cell for the activity of suppressor cells induced in highzone tolerance to deaggregated human gamma globulin (HGG). We applied an in vitro system for the initiation of an immune response, consisting of culturing spleen lymphocytes on HGG-fed macrophages, in which initiator T cells are generated. These cells, when injected into the foot pads of syngeneic mice, recruit specific anti-HGG effector T lymphocytes. We found that HGG-fed macrophages were incapable of signaling spleen cells from HGG-tolerant animals to generate initiator cells. Spleen cells from tolerant animals, when mixed with spleen cells from normal donors, inhibited the capacity of the normal population to give rise to initiator cells after culture on HGG-fed macrophages. Thus, suppressor T cells, which inhibit education of T cells by antigen-fed macrophages, exist in the tolerant spleen. Spleen cells from HGG-tolerant animals, when seeded on macrophages fed simultaneously with HGG and keyhole limpet hemocyanin (KLH), also prevented the macrophages from signaling an anti-KLH response. Spleen cells from HGG-tolerant animals from which the suppressor cells were depleted by “affinity chromatography” on histamine columns, when seeded on macrophages fed with HGG and KLH, generated initiators to both antigens. It appears, therefore, that suppressor cells act at the level of antigen-presenting macrophages, affecting macrophages fed with the tolerogen, and therefore affecting also the immunogenic effect of other antigens presented by the same macrophages. By testing the mode of action of suppressor cells on the tolerogen-fed macrophage, we found that the suppressors manifest a cytotoxic effect on such macrophages. We propose that the suppressor cell is, in fact, an anti modified-self killer, acting on macrophages possessing surface self-antigens “modified” by the tolerogen. The similarity in cell-surface markers between suppressors and anti modified-self killers supports this concept.
Keywords: immune tolerance, suppressor cells, macrophage inactivation
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Basten A., Miller J. F., Sprent J., Cheers C. Cell-to-cell interaction in the immune response. X. T-cell-dependent suppression in tolerant mice. J Exp Med. 1974 Jul 1;140(1):199–217. doi: 10.1084/jem.140.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Benjamin D. C. Evidence for specific suppression in the maintenance of immunologic tolerance. J Exp Med. 1975 Mar 1;141(3):635–646. doi: 10.1084/jem.141.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Cantor H., Boyse E. A. Regulation of cellular and humoral immune responses by T-cell subclasses. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 1):23–32. doi: 10.1101/sqb.1977.041.01.006. [DOI] [PubMed] [Google Scholar]
 - Cantor H., Shen F. W., Boyse E. A. Separation of helper T cells from suppressor T cells expressing different Ly components. II. Activation by antigen: after immunization, antigen-specific suppressor and helper activities are mediated by distinct T-cell subclasses. J Exp Med. 1976 Jun 1;143(6):1391–1340. doi: 10.1084/jem.143.6.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Chiller J. M., Weigle W. O. Cellular events during induction of immunologic unresponsiveness in adult mice. J Immunol. 1971 Jun;106(6):1647–1653. [PubMed] [Google Scholar]
 - Chiller J. M., Weigle W. O. Termination of tolerance to human gamma globulin in mice by antigen and bacterial lipopolysaccharide (endotoxin). J Exp Med. 1973 Mar 1;137(3):740–750. doi: 10.1084/jem.137.3.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Doyle M. V., Parks E., Weigle W. O. Specific, transient suppression of the immune response by HGG tolerant spleen cells. II. Effector cells and target cells. J Immunol. 1976 Oct;117(4):1152–1158. [PubMed] [Google Scholar]
 - Dresser D. W., Mitchison N. A. The mechanism of immunological paralysis. Adv Immunol. 1968;8:129–181. doi: 10.1016/s0065-2776(08)60466-6. [DOI] [PubMed] [Google Scholar]
 - Gamble C. N. The role of soluble aggregates in the primary immune response of mice to human gamma globulin. Int Arch Allergy Appl Immunol. 1966;30(5):446–455. doi: 10.1159/000229829. [DOI] [PubMed] [Google Scholar]
 - Gershon R. K. T cell control of antibody production. Contemp Top Immunobiol. 1974;3:1–40. doi: 10.1007/978-1-4684-3045-5_1. [DOI] [PubMed] [Google Scholar]
 - Herzenberg L. A., Herzenberg L. A., Black S. J., Loken M. R., Okumura K., van der Loo W., Osborne B. A., Hewgill D., Goding J. W., Gutman G. Surface markers and functional relationships of cells involved in murine B-lymphocyte differentiation. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 1):33–45. doi: 10.1101/sqb.1977.041.01.007. [DOI] [PubMed] [Google Scholar]
 - Jandinski J., Cantor H., Tadakuma T., Peavy D. L., Pierce C. W. Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: suppressor and helper activities are inherent properties of distinct T-cell subclasses. J Exp Med. 1976 Jun 1;143(6):1382–1390. doi: 10.1084/jem.143.6.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Katz D. H., Benacerraf B. The regulatory influence of activated T cells on B cell responses to antigen. Adv Immunol. 1972;15:1–94. doi: 10.1016/s0065-2776(08)60683-5. [DOI] [PubMed] [Google Scholar]
 - More R., Yron I., Sasson S. B., Weiss D. W. In vitro studies on cell-mediated cytotoxicity by means of a terminal labeling technique. Cell Immunol. 1975 Feb;15(2):382–391. doi: 10.1016/0008-8749(75)90016-7. [DOI] [PubMed] [Google Scholar]
 - Nachtigal D., Zan-Bar I., Feldman M. The role of specific suppressor T cells in immune tolerance. Transplant Rev. 1975;26:87–105. doi: 10.1111/j.1600-065x.1975.tb00176.x. [DOI] [PubMed] [Google Scholar]
 - Peck A. B., Andersson L. C., Wigzell H. Secondary in vitro responses of T lymphocytes to non-H-2 alloantigens self-H-2-restricted responses induced in heterologous serum are not dependent on primary-stimulating non-H-2 alloantigens. J Exp Med. 1977 Apr 1;145(4):802–818. doi: 10.1084/jem.145.4.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Rosenstreich D. L., Mizel S. B. The participation of macrophages and macrophage cell lines in the activation of T lymphocytes by mitogens. Immunol Rev. 1978;40:102–135. doi: 10.1111/j.1600-065x.1978.tb00403.x. [DOI] [PubMed] [Google Scholar]
 - Shearer G. M., Weinstein Y., Melmon K. L. Enhancement of immune response potential of mouse lymphoid cells fractionated over insolubilized conjugated histamine columns. J Immunol. 1974 Aug;113(2):597–607. [PubMed] [Google Scholar]
 - Sjöberg O. Antigen-binding cells in mice immune or tolerant to Escherichia coli polysaccharide. J Exp Med. 1971 May 1;133(5):1015–1025. doi: 10.1084/jem.133.5.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Taniguchi M., Miller J. F. Specific suppression of the immune response by a factor obtained from spleen cells of mice tolerant to human gamma-globulin. J Immunol. 1978 Jan;120(1):21–26. [PubMed] [Google Scholar]
 - Tzehoval E., Segal S., Stabinsky Y., Fridkin M., Spirer Z., Feldman M. Tuftsin (an Ig-associated tetrapeptide) triggers the immunogenic function of macrophages: implications for activation of programmed cells. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3400–3404. doi: 10.1073/pnas.75.7.3400. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Weinstein Y., Melmon K. L., Bourne H. R., Sela M. Specific leukocyte receptors for small endogenous hormones. Detection by cell binding to insolubilized hormone preparations. J Clin Invest. 1973 Jun;52(6):1349–1361. doi: 10.1172/JCI107307. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Zan-Bar I., Murphy D. B., Strober S. Cellular basis of tolerance to serum albumin in adult mice. I. characterization of T suppressor and T helper cells. J Immunol. 1978 Feb;120(2):497–506. [PubMed] [Google Scholar]
 
