Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Sep 17;93(19):10206–10211. doi: 10.1073/pnas.93.19.10206

Immunolocalization of ion transport proteins in human autosomal dominant polycystic kidney epithelial cells.

S R Brill 1, K E Ross 1, C J Davidow 1, M Ye 1, J J Grantham 1, M J Caplan 1
PMCID: PMC38362  PMID: 8816777

Abstract

The kidneys of patients with autosomal dominant polycystic kidney disease become massively enlarged due to the progressive expansion of myriad fluid-filled cysts. The epithelial cells that line the cyst walls are responsible for secreting the cyst fluid, but the mechanism through which this secretion occurs is not well established. Recent studies suggest that renal cyst epithelial cells actively secrete Cl across their apical membranes, which in turn drives the transepithelial movement of Na and water. The characteristics of this secretory flux suggest that it is dependent upon the participation of an apical cystic fibrosis transmembrane conductance regulator (CFTR)-like Cl channel and basolateral Na,K-ATPase. To test this hypothesis, we have immunolocalized the CFTR and Na,K-ATPase proteins in intact cysts and in cyst epithelial cells cultured in vitro on permeable filter supports. In both settings, cyst epithelial cells were found to possess Na,K-ATPase exclusively at their basolateral surfaces; apical labeling was not detected. The CFTR protein was present at the apical surfaces of cyst epithelial cells that had been stimulated to secrete through incubation in forskolin. CFTR was detected in intracellular structures in cultured cyst epithelial cells that had not received the forskolin treatment. These results demonstrate that the renal epithelial cells that line cysts in autosomal dominant polycystic kidney disease express transport systems with the appropriate polarity to mediate active Cl and fluid secretion.

Full text

PDF
10206

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avner E. D., Sweeney W. E., Jr, Nelson W. J. Abnormal sodium pump distribution during renal tubulogenesis in congenital murine polycystic kidney disease. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7447–7451. doi: 10.1073/pnas.89.16.7447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cameron P. L., Südhof T. C., Jahn R., De Camilli P. Colocalization of synaptophysin with transferrin receptors: implications for synaptic vesicle biogenesis. J Cell Biol. 1991 Oct;115(1):151–164. doi: 10.1083/jcb.115.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carone F. A., Nakamura S., Caputo M., Bacallao R., Nelson W. J., Kanwar Y. S. Cell polarity in human renal cystic disease. Lab Invest. 1994 May;70(5):648–655. [PubMed] [Google Scholar]
  4. Crawford I., Maloney P. C., Zeitlin P. L., Guggino W. B., Hyde S. C., Turley H., Gatter K. C., Harris A., Higgins C. F. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9262–9266. doi: 10.1073/pnas.88.20.9262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fisone G., Snyder G. L., Fryckstedt J., Caplan M. J., Aperia A., Greengard P. Na+,K(+)-ATPase in the choroid plexus. Regulation by serotonin/protein kinase C pathway. J Biol Chem. 1995 Feb 10;270(6):2427–2430. doi: 10.1074/jbc.270.6.2427. [DOI] [PubMed] [Google Scholar]
  6. Fry J. L., Jr, Koch W. E., Jennette J. C., McFarland E., Fried F. A., Mandell J. A genetically determined murine model of infantile polycystic kidney disease. J Urol. 1985 Oct;134(4):828–833. doi: 10.1016/s0022-5347(17)47448-9. [DOI] [PubMed] [Google Scholar]
  7. Gardner K. D., Jr, Glew R. H., Evan A. P., McAteer J. A., Bernstein J. Why renal cysts grow. Am J Physiol. 1994 Mar;266(3 Pt 2):F353–F359. doi: 10.1152/ajprenal.1994.266.3.F353. [DOI] [PubMed] [Google Scholar]
  8. Gattone V. H., 2nd, Grantham J. J. Understanding human cystic disease through experimental models. Semin Nephrol. 1991 Nov;11(6):617–631. [PubMed] [Google Scholar]
  9. Gottardi C. J., Caplan M. J. An ion-transporting ATPase encodes multiple apical localization signals. J Cell Biol. 1993 Apr;121(2):283–293. doi: 10.1083/jcb.121.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gottardi C. J., Caplan M. J. Delivery of Na+,K(+)-ATPase in polarized epithelial cells. Science. 1993 Apr 23;260(5107):552–556. doi: 10.1126/science.8386395. [DOI] [PubMed] [Google Scholar]
  11. Gottardi C. J., Caplan M. J. Molecular requirements for the cell-surface expression of multisubunit ion-transporting ATPases. Identification of protein domains that participate in Na,K-ATPase and H,K-ATPase subunit assembly. J Biol Chem. 1993 Jul 5;268(19):14342–14347. [PubMed] [Google Scholar]
  12. Grantham J. J. 1992 Homer Smith Award. Fluid secretion, cellular proliferation, and the pathogenesis of renal epithelial cysts. J Am Soc Nephrol. 1993 Jun;3(12):1841–1857. doi: 10.1681/ASN.V3121841. [DOI] [PubMed] [Google Scholar]
  13. Grantham J. J., Geiser J. L., Evan A. P. Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int. 1987 May;31(5):1145–1152. doi: 10.1038/ki.1987.121. [DOI] [PubMed] [Google Scholar]
  14. Grantham J. J., Ye M., Gattone V. H., 2nd, Sullivan L. P. In vitro fluid secretion by epithelium from polycystic kidneys. J Clin Invest. 1995 Jan;95(1):195–202. doi: 10.1172/JCI117638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanaoka K., Devuyst O., Schwiebert E. M., Wilson P. D., Guggino W. B. A role for CFTR in human autosomal dominant polycystic kidney disease. Am J Physiol. 1996 Jan;270(1 Pt 1):C389–C399. doi: 10.1152/ajpcell.1996.270.1.C389. [DOI] [PubMed] [Google Scholar]
  16. Harris P. C., Ward C. J., Peral B., Hughes J. Polycystic kidney disease. 1: Identification and analysis of the primary defect. J Am Soc Nephrol. 1995 Oct;6(4):1125–1133. doi: 10.1681/ASN.V641125. [DOI] [PubMed] [Google Scholar]
  17. Kawa G., Nagao S., Yamamoto A., Omori K., Komatz Y., Takahashi H., Tashiro Y. Sodium pump distribution is not reversed in the DBA/2FG-pcy, polycystic kidney disease model mouse. J Am Soc Nephrol. 1994 Jun;4(12):2040–2049. doi: 10.1681/ASN.V4122040. [DOI] [PubMed] [Google Scholar]
  18. Lemas M. V., Hamrick M., Takeyasu K., Fambrough D. M. 26 amino acids of an extracellular domain of the Na,K-ATPase alpha-subunit are sufficient for assembly with the Na,K-ATPase beta-subunit. J Biol Chem. 1994 Mar 18;269(11):8255–8259. [PubMed] [Google Scholar]
  19. Mangoo-Karim R., Ye M., Wallace D. P., Grantham J. J., Sullivan L. P. Anion secretion drives fluid secretion by monolayers of cultured human polycystic cells. Am J Physiol. 1995 Sep;269(3 Pt 2):F381–F388. doi: 10.1152/ajprenal.1995.269.3.F381. [DOI] [PubMed] [Google Scholar]
  20. Moyer J. H., Lee-Tischler M. J., Kwon H. Y., Schrick J. J., Avner E. D., Sweeney W. E., Godfrey V. L., Cacheiro N. L., Wilkinson J. E., Woychik R. P. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science. 1994 May 27;264(5163):1329–1333. doi: 10.1126/science.8191288. [DOI] [PubMed] [Google Scholar]
  21. Perrone R. D. In vitro function of cyst epithelium from human polycystic kidney. J Clin Invest. 1985 Oct;76(4):1688–1691. doi: 10.1172/JCI112155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Perrone R. D., McLaughlin M. L. Cyst function in polycystic kidney disease: nongradient cysts. Clin Nephrol. 1989 Sep;32(3):113–118. [PubMed] [Google Scholar]
  23. Pietrini G., Matteoli M., Banker G., Caplan M. J. Isoforms of the Na,K-ATPase are present in both axons and dendrites of hippocampal neurons in culture. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8414–8418. doi: 10.1073/pnas.89.18.8414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schäfer K., Gretz N., Bader M., Oberbäumer I., Eckardt K. U., Kriz W., Bachmann S. Characterization of the Han:SPRD rat model for hereditary polycystic kidney disease. Kidney Int. 1994 Jul;46(1):134–152. doi: 10.1038/ki.1994.253. [DOI] [PubMed] [Google Scholar]
  25. Singh S. K., Binder H. J., Boron W. F., Geibel J. P. Fluid absorption in isolated perfused colonic crypts. J Clin Invest. 1995 Nov;96(5):2373–2379. doi: 10.1172/JCI118294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith J. J., Welsh M. J. Fluid and electrolyte transport by cultured human airway epithelia. J Clin Invest. 1993 Apr;91(4):1590–1597. doi: 10.1172/JCI116365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Welsh M. J., Smith P. L., Fromm M., Frizzell R. A. Crypts are the site of intestinal fluid and electrolyte secretion. Science. 1982 Dec 17;218(4578):1219–1221. doi: 10.1126/science.6293054. [DOI] [PubMed] [Google Scholar]
  28. Wilson P. D., Sherwood A. C., Palla K., Du J., Watson R., Norman J. T. Reversed polarity of Na(+) -K(+) -ATPase: mislocation to apical plasma membranes in polycystic kidney disease epithelia. Am J Physiol. 1991 Mar;260(3 Pt 2):F420–F430. doi: 10.1152/ajprenal.1991.260.3.F420. [DOI] [PubMed] [Google Scholar]
  29. Yamaguchi T., Nagao S., Takahashi H., Ye M., Grantham J. J. Cyst fluid from a murine model of polycystic kidney disease stimulates fluid secretion, cyclic adenosine monophosphate accumulation, and cell proliferation by Madin-Darby canine kidney cells in vitro. Am J Kidney Dis. 1995 Mar;25(3):471–477. doi: 10.1016/0272-6386(95)90111-6. [DOI] [PubMed] [Google Scholar]
  30. Ye M., Grantham J. J. The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med. 1993 Jul 29;329(5):310–313. doi: 10.1056/NEJM199307293290503. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES