Skip to main content
Springer logoLink to Springer
. 2013 Jul 19;17(4):627–639. doi: 10.1007/s11030-013-9459-5

Synthesis of spiro[indoline-3,1-quinolizines] and spiro[indoline-3,4-pyrido[1,2-a]quinolines] via three-component reactions of azaarenes, acetylenedicarboxylate, and 3-methyleneoxindoles

Jing Sun 1, Hui Gong 1, Yan Sun 1, Chao-Guo Yan 1,
PMCID: PMC3836201  PMID: 23868182

Abstract

Abstract

The three-component reactions of substituted pyridines, dimethyl acetylenedicarboxylates, and 3-phenacylideneoxindoles afforded spiro[indoline-3,1-quinolizines] in high yields and with high diastereoselectivity. The Diels–Alder reactions of spiro[indoline-3,1-quinolizines] with maleic anhydride and N-phenyl maleimides successfully resulted in polyfunctionalized isoquinolinuclidine derivatives. The similar three-component reactions with quinoline resulted in the novel spiro[indoline-3,4-pyrido[1,2-a]quinolines] in moderate to good yields.

Graphical Abstract

graphic file with name 11030_2013_9459_Figa_HTML.jpg

Electronic supplementary material

The online version of this article (doi:10.1007/s11030-013-9459-5) contains supplementary material, which is available to authorized users.

Keywords: Multicomponent reaction; MCR; Domino reaction; Diels–Alder reaction; Spirooxindole; Isoquinolinuclidine; Spiro[indoline-3,1-quinolizines]

Introduction

The spirooxindole core is a privileged heterocyclic ring system that is featured in a large number of bioactive naturally occurring alkaloids and medicinally relevant compounds [15]. Due to the exceptional high reactivity of the 3-carbonyl group, 3-methylene and 3-phenacylideneoxindoles have attracted a lot of attention for synthetic reactions, especially multicomponent reactions [68] and catalytic asymmetric reactions [911] in the past few years. As a result, numerous elegant transformations have been developed for the diastereoselective and enantioselective construction of versatile spirooxindole skeletons [1217]. For the synthesis of these challenging heterocycles, the 1,4-dipolar cycloaddition of Huisgen 1,4-dipoles, which were generated from reactions of nitrogen heterocycles with electron-deficient alkynes, has proven to be a convenient and efficient synthetic methodology [18, 19]. Nair et al. [20] first reported the three-component reaction of pyridine, dimethyl acetylenedicarboxylate (DMAD), and N-benzylisatins to give spiro[indololine-3,2-pyrido[2,1-b][1,3]oxazine]. Later, Yavari [21] and Nair [22] reported the similar reactions of quinoline and isoquinoline with DMAD and isatins for the preparation of complex spirooxindole derivatives. Shi and co-workers [23] found that the three-component reactions of pyridine, DMAD, and N-substituted isatylidene derivatives afforded spiro[indoline-3,2-quinolizine] in high yields and with good diastereoselectivities. Recently, we successfully developed an efficient synthetic protocol for dispirooxindole-fused heterocycles via the domino reaction of p-dimethylaminopyridine and DMAD with two molecules of 3-phenacylideneoxindoles [24]. In order to demonstrate the synthetic utility of this practical method, herein we wish to report the three-component reaction of azaarenes such as substituted pyridines and quinoline with DMAD and 3-phenacylideneoxindoles and 3-ethoxycarbonylmethyleneoxindoles for the synthesis of spiro [indoline-3,1-quinolizine] derivatives and their potential applications as effective dienes for Diels–Alder reactions.

Results and discussion

We initiated our studies by evaluating the reactivity of the Huisgen 1,4-dipoles generated from the reaction of alkylpyridines with DMAD. According to our previously established conditions for the reaction of 4-dimethylaminopyridine [24], the three-component reactions of 2-picoline with DMAD and 3-phenacylideneoxindoles in THF at room temperature proceeded very smoothly to give the expected 2,9a-dihydrospiro[indoline-3,1-quinolizine] 1a1b in moderate yields (Table 1, entries 1–2). Under similar conditions, the reactions with 3-picoline and 4-picoline gave the corresponding spiro products 1c1h in high yields (Table 1, entries 3–8). When 4-methoxypyridine was utilized in the reactions, much higher yields of spiro compounds 1j1o (Table 1, entries 9–15) were obtained.

Table 1.

Synthesis of 2,9a-dihydrospiro[indoline-3,1-quinolizine]s 1a1o

graphic file with name 11030_2013_9459_Figb_HTML.jpg
1a1o
Entry Compd. R Ar R R Yielda (%)
1 1a 2-CH3 p-CH3C6H4 H Bn 66
2 1b 2-CH3 p-CH3C6H4 CH3 n-C4H9 53
3 1c 3-CH3 p-CH3OC6H4 H Bn 61
4 1d 3-CH3 m-CH3OC6H4 F Bn 58
5 1e 3-CH3 p-CH3C6H4 Cl Bn 62
6 1f 3-CH3 p-CH3OC6H4 F n-C4H9 74
7 1g 4-CH3 p-CH3OC6H4 F n-C4H9 77
8 1h 4-CH3 p-CH3OC6H4 Cl n-C4H9 75
9 1i 4-CH3O p-CH3OC6H4 Cl Bn 89
10 1j 4-CH3O p-CH3C6H4 Cl Bn 84
11 1k 4-CH3O p-CH3OC6H4 F Bn 91
12 1l 4-CH3O p-CH3C6H4 F Bn 87
13 1m 4-CH3O C6H5 F Bn 81
14 1n 4-CH3O p-CH3OC6H4 Cl n-C4H9 93
15 1o 4-CH3O p-CH3C6H4 F n-C4H9 90

Reaction conditions Substituted pyridine (1.2 mmol), DMAD (1.2 mmol) and 3-phenacylideneoxindole (1.0 mmol) in THF (10.0 mL), rt, 6 h

aIsolated yield

The structures of the prepared 2,9a-dihydrospiro[indoline-3,1-quinolizin]-2-ones 1a1n were fully characterized by 1H NMR, 13C NMR, HRMS, and IR. The 1H NMR spectra of the spiro compounds 1a1n usually show one set of signals for the characteristic groups in the molecule, which clearly indicated that only one diastereoisomer existed in each sample. The molecular structures of compounds 1f (Fig. 1), 1h (SPI, Fig. s1), and 1m (SPI, Fig. s2) were successfully confirmed by single-crystal X-ray diffraction. These three molecules (1f, 1h, 1m) have the same stereochemistry. In the newly formed tetrahydropyridyl ring, the two protons at 2- and 4-positions are in cis-orientation. The benzoyl and aryl groups of the oxindole moiety also exist in cis-position. It is reported that the benzoyl group and aryl group of oxindole moiety exist in cis-position in the starting 3-phenacylideneoxindoles [25, 26] indicating that this configuration is expected to be retained in the reaction. Thus, we unambiguously ascertained that compounds 1a1o are the cis-isomers proving that this three-component reaction undergoes with very high diastereoselectivity.

Fig. 1.

Fig. 1

ORTEP representation of crystal structure of spiro compound 1f

It should be pointed out that spiro compounds 1i1o derived from the reactions with 4-methoxypyridine are not very stable in solution because of the presence of a reactive methyl vinyl ether moiety. The 4-methoxy group could be slowly transformed into the 4-carbonyl group during the purification process when dissolved in THF, DCM, ethyl acetate, and toluene (Scheme 1). The structures of the two spiro compounds 2a2b were successfully characterized via spectroscopic methods, and the structure of spiro compound 2b was also confirmed by X-ray diffraction (SPI, Fig. s3).

Scheme 1.

Scheme 1

Formation of 2,8-dioxo-2,8,9,9a-tetrahydrospiro[indoline-3,1-quinolizines]

To further demonstrate the substrate scope and the diastereoselectivity of this three-component reaction, quinoline was also utilized in the reaction. The three-component reaction of quinoline, DMAD, and 3-phenacylideneoxindoles in THF usually resulted in a complex mixture. After exploring different solvents, we were pleased to find that the reaction proceeded smoothly in DME to give the desired 3,4a-dihydrospiro[indoline-3,4-pyrido[1,2-a]quinolines] 3a3e in moderate yields after thin-layer chromatography (Table 2, entries 1–5). Under similar conditions, the reactions with 3-ethoxycarbonylmethyleneoxindoles afforded the spiro [indoline-3,4-pyrido[1,2-a]quinolines] 3f3j with much better yields (Table 2, entries 6–10). The structures of spiro compounds 3a3j were also confirmed using spectroscopic methods and compounds 3e and 3i were further confirmed by X-ray diffraction (Figs. 2, 3, respectively). A stereochemistry similar to that of 1a1o was observed for the spiro compounds 3a3j, in which the two protons at 2- and 4-positions existed in cis-orientation in the newly formed tetrahydropyridyl ring, and the benzoyl group and the aryl group of the oxindole moiety also existed in cis-position. These results also indicate that this three-component reaction is a high diastereoselective reaction.

Table 2.

Synthesis of 3,4a-dihydrospiro[indoline-3,4-pyrido[1,2-a]quinolines] 3a3j

graphic file with name 11030_2013_9459_Figc_HTML.jpg
3a3j
Entry Compd. R R E Yielda (%)
1 3a Cl Bn C6H4CH3-p 40
2 3b Cl Bn C6H4Cl-p 52
3 3c F Bn C6H5 55
4 3d F Bn C6H4Cl-p 53
5 3e Cl n-C4H9 C6H4OCH3-p 60
6 3f CH3 Bn OEt 50
7 3g H Bn OEt 63
8 3h Cl Bn OEt 70
9 3i Cl n-Bu OEt 73
10 3j F Bn OEt 65

Reaction conditions Quinoline (1.5 mmol), DMAD (1.5 mmol), and 3-methyleneoxindole (1.0 mmol) in DME (10.0 mL), rt, 6 h aIsolated yield

Fig. 2.

Fig. 2

X-ray structure of spiro compound 3e

Fig. 3.

Fig. 3

X-ray structure of spiro compound 3i

There is a 1,2-dihydropyridyl moiety in the above-prepared dihydrospiro[indoline-3,1-quinolizin]-2-ones 1a1n. 1,2-Dihydropyridine is an effective diene for Diels–Alder reaction to construct versatile bridged heterocyclic compounds [2733]. Thus, we proceeded to investigate the role of our spiro compounds 1a1n as dienophiles in Diels–Alder reactions. The reaction of dihydrospiro[indoline-3,1-quinolizines] with a slight excess of N-phenyl maleimides or maleic anhydride proceeded smoothly in refluxing 1,2-dimethoxyethane for 6 h to give the desired 1,4-cycloaddition products 4a4g in satisfactory yields (Table 3). 1H NMR data and single-crystal determination of compound 4d (Fig. 4) indicated that the configuration of previous dihydrospiro[indoline-3,1-quinolizine] moiety is retained and the maleimide unit exists in exo-configuration in this Diels–Alder reaction.

Table 3.

Diels–Alder reactions of 2,9a-dihydrospiro[indoline-3,1-quinolizines]

graphic file with name 11030_2013_9459_Figd_HTML.jpg
4a4g
Entry Compd. R Ar R R Z Yielda (%)
1 4a 4-CH3 p-CH3OC6H4 F Bn NC6H5 80
2 4b 4-CH3 p-CH3C6H4 Cl Bn NC6H5 77
3 4c 4-CH3 p-CH3OC6H4 F n-C4H9 NC6H4CH3-p 72
4 4d 4-CH3 p-CH3OC6H4 F n-C4H9 NC6H4Cl-p 85
5 4e 3-CH3 p-CH3OC6H4 F n-C4H9 NC6H4Cl-p 86
6 4f 4-OCH3 p-CH3OC6H4 Cl n-C4H9 O 90
7 4g 4-OCH3 p-CH3C6H4 F n-C4H9 O 88

Reaction conditions Spiro[indoline-3,1-quinolizine] (1.0 mmol) and N-substituted maleimide or maleic anhydride (1.5 mmol) in DME (10.0 mL), reflux, 12 h

a Isolated yield

Fig. 4.

Fig. 4

ORTEP representation of crystal structure of spiro compound 4d

Conclusion

In summary, an efficient protocol for the synthesis of functionalized spiro[indoline-3,1-quinolizine] and spiro[indoline-3,4-pyrido[1,2-a]quinoline] was successfully developed by three-component reactions of nitrogen heterocycles, DMADs, and 3-methyleneoxindoles. This MCR reaction can proceed smoothly under mild conditions to afford complex heterocycles in moderate to good yields and high diastereoselectivities. Furthermore, the prepared spiro[indoline-3,1-quinolizines] can undergo Diels–Alder reactions with maleic anhydride and N-phenyl maleimides to give complex isoquinolinuclidine derivatives. The simplicity of the procedure, readily available substrates, and ease of handling render this protocol applicable for the synthesis of structurally diverse heterocyclic compounds.

Experimental section

General procedure for the three-component reaction of substituted pyridine, DMAD, and 3-phenacylideneoxindoles

A mixture of substituted pyridine (1.2 mmol), DMAD (1.2 mmol, 0.170 g), and 3-phenacylideneoxindole (1.0 mmol) in 10.0 mL of tetrahydrofuran was stirred at room temperature for 6 h. Then, the solvent was removed by evaporation and the residue was subjected to thin-layer chromatography (15 × 25 cm SiO2 plate) with a mixture of light petroleum and ethyl acetate (V/V = 2:1) as the developing reagent. The product was separated from silica gel by eluting with ethanol and is pure enough for spectroscopic analysis.

Dimethyl 1-benzyl-6-methyl-2-(4-methylbenzoyl)-2-oxo-2,9a-dihydrospiro[indoline-3,1-quinolizine]-3 ,4-dicarboxylate (1a)

Yellow solid, 66 %, m.p. 173–175 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.26 (br s, 2H, ArH), 7.20 (br s, 2H, ArH), 7.15–7.13 (m, 4H, ArH), 7.06 (br s, 2H, ArH), 6.89 (br s, 3H, ArH), 6.58 (br s, 1H, CH), 5.60 (brs, 1H, CH), 5.27 (s, 1H, CH), 4.98 (br s, 1H, CH), 4.61 (br s, 2H, CH), 4.50 (br s, 1H, CH), 3.87 (s, 3H, OCH3), 3.56 (s, 3H, OCH3), 2.32 (s, 3H, CH3), 1.93 (s, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 196.5, 174.2, 166.3, 166.1, 146.7, 143.4, 136.8, 135.1, 134.9, 128.9, 128.6, 128.4, 128.2, 127.4, 127.1, 126.9, 125.4, 124.9, 122.1, 116.1, 113.9, 108.5, 103.1, 66.8, 58.4, 53.3, 52.2, 49.2, 43.9, 21.7, 20.6; IR (KBr) υ: 3447, 2946, 2025, 1732, 1710, 1685, 1655, 1611, 1578, 1489, 1465, 1437, 1405, 1368, 1291, 1232, 1177, 1129, 1080, 1017, 963, 815, 793, 738 cm-1; MS (m/z): HRMS (ESI) Calcd. for C36H33N2O6 ([M+H]+): 589.2347. Found: 589.2350.

Diethyl 1-butyl-5,6-dimethyl-2-(4-methylbenzoyl)-2-oxo- 2,9a-dihydrospiro[indoline-3,1-quinolizine]-3,4- dicarboxylate (1b)

Yellow solid, 53 %, m.p. 161–163 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.39 (d, J = 7.8 Hz, 2H, ArH), 7.18 (d, J = 7.2 Hz, 2H, ArH), 7.03–7.01 (m, 2H, ArH), 6.73 (d, J = 7.8 Hz, 1H, ArH), 6.21 (d, J = 7.8 Hz, 1H, CH), 5.50–5.47 (m, 1H, CH), 5.23 (s, 1H, CH), 4.93–4.91 (m, 1H, CH), 4.65 (d, J = 9.6 Hz, 1H, CH), 3.95 (s, 3H, OCH3), 3.39 (s, 3H, OCH3), 3.24–3.21 (m, 1H, CH), 3.08–3.04 (m, 1H, CH), 2.32 (s, 3H, CH3), 2.24 (s, 3H, CH3), 1.67 (s, 3H, CH3), 0.95 (br s, 3H, CH), 0.69 (t, J = 7.2 Hz, 3H, CH3);13C NMR (150 MHz, DMSO-d6)δ: 196.9, 172.8, 165.1, 164.3, 144.4, 143.2, 139.4, 130.6, 128.9, 128.6, 128.0, 127.8, 127.7, 126.7, 121.1, 121.0, 107.9, 101.9, 63.7, 53.3, 53.0, 51.3, 44.5, 28.4, 21.1, 21.0, 19.4, 13.5; IR (KBr) υ: 3452, 2952, 2869, 2025, 1747, 1698, 1659, 1615, 1582, 1496, 1436, 1362, 1269, 1237, 1151, 1115, 1083, 1048, 936, 866, 827, 779, 740, 701 cm-1; MS (m/z): HRMS (ESI) Calcd. for C34H37N2O6 ([M+H]+): 569.2686. Found: 569.2671.

Dimethyl 1-benzyl-2-(4-methoxybenzoyl)-7-methyl-2-oxo- 2,9a-dihydrospiro[indoline-3,1-quinolizine]-3,4- dicarboxylate (1c)

Yellow solid, 61 %, m.p. 190–192 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.51 (d, J = 7.8 Hz, 2H, ArH), 7.18 (t, J = 7.2 Hz, 1H, ArH), 7.11 (t, J = 7.8 Hz, 4H, ArH), 6.98–6.93 (m, 3H, ArH), 6.81 (d, J = 7.2 Hz, 2H, ArH), 6.69 (d, J = 7.8 Hz, 1H, ArH), 6.05 (s, 1H, CH), 5.54 (d, J = 8.4 Hz, 1H, CH), 5.35 (s, 1H, CH), 4.91–4.90 (m, 2H, CH), 4.64 (d, J = 15.7 Hz, 1H, CH), 4.49 (d, J = 15.7 Hz, 1H, CH), 3.95 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 3.43 (s, 3H, OCH3), 1.43 (s, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 195.8, 174.8, 166.1, 165.3, 163.3, 145.6, 142.6, 135.2, 130.5, 130.4, 128.6, 128.5, 128.2, 127.6, 127.5, 126.9, 125.9, 123.0, 122.5, 116.0, 113.4, 109.5, 108.6, 104.6, 62.7, 55.4, 54.1, 53.4, 51.6, 47.4, 43.9, 17.5; IR (KBr) υ: 3450, 2949, 2843, 2026, 1742, 1708, 1674, 1609, 1582, 1510, 1489, 1464, 1434, 1412, 1380, 1308, 1244, 1172, 1125, 1021, 983, 941, 899, 825, 776, 746 cm-1; MS (m/z): HRMS (ESI) Calcd. for C36H33N2O7 ([M+H]+): 605.2282. Found: 605.2290.

Dimethyl 1-benzyl-5-fluoro-2-(3-methoxybenzoyl)-7-methyl-2-oxo-2,9a-dihydrospiro[indo line-3,1-quinolizine]-3,4-dicarboxylate (1d)

Yellow solid, 58 %, m.p. 172–173 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.36 (brs, 1H, ArH), 7.18–7.13 (m, 5H, ArH), 7.05–7.00 (m, 2H, ArH), 6.85 (br s, 3H, ArH), 6.74 (br s, 1H, ArH), 6.11 (s, 1H, CH), 5.59 (br s, 1H,CH), 5.41 (s, 1H, CH), 4.97–4.93 (m, 2H, CH), 4.60 (br s, 1H,CH), 4.48 (br s, 1H,CH), 3.97 (s, 3H, OCH3), 3.73 (s, 3H, OCH3), 3.45 (s, 3H, OCH3), 1.47 (s, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 197.1, 174.4, 165.5 (d, J = 134.6 Hz), 159.5, 145.7, 138.8, 138.7, 134.9, 129.3, 128.8, 128.5, 127.7, 126.9, 122.5, 120.8, 120.3, 115.7, 115.5 (d, J = 24.9 Hz), 115.1 (d, J = 24.3 Hz), 111.5, 109.7, 109.1 (d, J = 5.7 Hz), 104.3, 62.6, 55.4, 54.4, 53.4, 51.7, 47.9, 44.1, 17.5; IR (KBr) υ: 3451, 2948, 2839, 2025, 1742, 1710, 1612, 1582, 1486, 1452, 1433, 1410, 1342, 1294, 1251, 1194, 1176, 1117, 1050, 1009, 983, 946, 896, 868, 841, 813, 788, 752 cm-1; MS (m/z): HRMS (ESI) Calcd. for C36H32FN2O7 ([M+H]+): 623.2201. Found: 623.2196.

Dimethyl 1-benzyl-5-chloro-7-methyl-2-(4- methylbenzoyl)-2-oxo-2,9a-dihydrospiro[indo-line-3,1- quinolizine]-3,4-dicarboxylate (1e)

Yellow solid, 62 %, m.p. 169–172 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.48 (d, J = 7.8 Hz, 2H, ArH), 7.24 (d, J = 7.8 Hz, 3H, ArH), 7.19 (t, J = 7.2 Hz, 1H, ArH), 7.12–7.09 (m, 3H, ArH), 6.76 (d, J = 7.2 Hz, 2H, ArH), 6.72 (d, J = 8.4 Hz, 1H, ArH), 6.11 (s, 1H, CH), 5.59 (d, J = 9.6 Hz, 1H, CH), 5.42 (s, 1H, CH), 4.96 (s, 1H, CH), 4.91 (d, J = 9.6 Hz, 1H, CH), 4.64 (d, J = 15.6 Hz, 1H, CH), 4.45 (d, J = 15.6 Hz, 1H, CH), 3.97 (s, 3H, OCH3), 3.43 (s, 3H, OCH3), 2.36 (s, 3H, CH3), 1.47 (s, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 196.7, 174.2, 165.9, 165.1, 145.6, 143.7, 141.2, 134.8, 134.7, 129.0, 128.7, 128.6, 128.4, 127.8, 127.6, 126.9, 122.6, 115.5, 109.8, 109.6, 104.6, 62.6, 54.3, 53.5, 51.7, 47.7, 43.9, 21.7, 17.5; IR (KBr) υ: 3446, 3040, 2948, 2853, 2025, 1716, 1680, 1611, 1584, 1482, 1434, 1404, 1371, 1295, 1243, 1178, 1115, 1076, 983, 942, 899, 801, 743, 703 cm-1; MS (m/z): HRMS (ESI) Calcd. for C36H32ClN2O6 ([M+H]+): 623.1957. Found: 623.1958.

Dimethyl 1-butyl-5-fluoro-2-(4-methoxybenzoyl)-7- methyl-2-oxo-2,9a-dihydrospiro[indo-line-3,1- quinolizine]-3,4-dicarboxylate (1f)

Yellow solid, 74 %, m.p. 162–163 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.44 (d, J = 9.0 Hz, 2H, ArH), 7.09 (td, J1 = 9.0 Hz, J2 = 2.4 Hz, 1H, ArH), 6.90–6.89 (m, 3H, ArH), 6.82 (dd, J1 = 8.7 Hz, J2 = 2.4 Hz, 1H, ArH), 6.09 (s, 1H, CH), 5.62 (d, J = 9.6 Hz, 1H, CH), 5.28 (s, 1H, CH), 4.92–4.90 (m, 1H, CH), 4.88 (brs, 1H, CH), 3.96 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.42 (s, 3H, OCH3), 3.40–3.36 (m, 1H, CH), 3.25–3.21 (m, 1H, CH), 1.48 (s, 3H, CH3), 0.99–0.91 (m, 3H, CH), 0.79–0.73 (m, 1H, CH), 0.69 (t, J = 7.2 Hz, 3H, CH3);13C NMR (150 MHz, DMSO-d6)δ: 195.8, 174.0, 165.9, 165.1, 163.3, 158.9 (d, J = 119.5 Hz), 145.5, 138.9, 130.5, 130.4, 128.2, 127.9, 127.8, 122.5, 115.8, 115.6 (d, J = 25.2 Hz), 114.9 (d, J = 23.9 Hz), 113.3, 109.6, 108.1 (d, J = 8.3 Hz), 104.3, 62.2, 55.3, 54.1, 53.3, 51.6, 47.4, 40.0, 29.1, 20.0, 17.5, 13.6; IR (KBr) υ: 3453, 2955, 2924, 2867, 2025, 1746, 1708, 1680, 1600, 1582, 1490, 1455, 1403, 1368, 1329, 1305, 1262, 1237, 1172, 1107, 1076, 1027, 1000, 981, 952, 895, 849, 815, 758 cm-1; MS (m/z): HRMS (ESI) Calcd. for C33H34FN2O7 ([M+H]+): 589.2358. Found: 589.2353.

Dimethyl 1-butyl-5-fluoro-2-(4-methoxybenzoyl)-8- methyl-2-oxo-2,9a-dihydrospiro[indo-line-3,1- quinolizine]-3,4-dicarboxylate (1g)

Yellow solid, 77 %, m.p. 164–166 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.42 (d, J = 7.2 Hz, 2H, ArH), 7.08 (br s, 1H, ArH), 6.89 (d, J = 7.2 Hz, 3H, ArH), 6.79 (d, J = 7.8 Hz, 1H, ArH), 6.33 (d, J = 7.2 Hz, 1H, CH), 5.26 (s, 1H, CH), 4.88 (s, 1H, CH), 4.73 (d, J = 7.2 Hz, 1H, CH), 4.61 (s, 1H, CH), 3.95 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.44 (s, 3H, OCH3), 3.36 (br s, 1H, CH), 3.29 (br s, 1H, CH), 1.38 (s, 3H, CH3), 1.06 (brs, 1H, CH), 0.98–0.97 (m, 2H, CH), 0.86 (brs, 1H, CH), 0.71 (br s, 3H, CH3);13C NMR (150 MHz, CDCl3) δ: 195.9, 174.1, 165.8, 164.9, 163.3, 145.4, 139.0, 132.6, 130.5, 130.4, 128.0, 127.9, 126.6, 115.5 (d, J = 25.2 Hz), 114.9 (d, J = 24.3 Hz), 113.6, 113.5, 113.3, 112.1, 110.2, 108.0 (d, J = 8.3 Hz), 105.8, 104.7, 63.1, 56.9, 55.4, 54.4, 53.4, 51.7, 47.5, 40.0, 29.4, 29.1, 20.8, 20.5, 20.1, 20.0, 13.7; IR (KBr) υ: 3449, 2953, 2927, 2867, 2026, 1734, 1700, 1671, 1595, 1490, 1437, 1377, 1313, 1278, 1245, 1200, 1174, 1141, 1120, 1023, 952, 885, 853, 816, 790, 755, 729 cm-1; MS (m/z): HRMS (ESI) Calcd. for C33H34FN2O7 ([M+H]+): 589.2358. Found: 589.2366.

Dimethyl 1-butyl-5-chloro-2-(4-methoxybenzoyl)-8- methyl-2-oxo-2,9a-dihydrospiro[indo-line-3,1- quinolizine]-3,4-dicarboxylate (1h)

Yellow solid, 75 %, m.p. 168–171 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.43 (d, J = 7.8 Hz, 2H, ArH), 7.29 (d, J = 7.8 Hz, 1H, ArH), 7.02 (s, 1H, ArH), 6.90 (t, J = 8.4 Hz, 3H, ArH), 6.33 (d, J = 7.8 Hz, 1H, CH), 5.27 (s, 1H, CH), 4.89 (s, 1H, CH), 4.73 (d, J = 7.2 Hz, 1H, CH), 4.60 (s, 1H, CH), 3.95 (s, 3H, OCH3), 3.79 (s, 3H, OCH3), 3.44 (s, 3H, OCH3), 3.37 (brs, 1H, CH), 3.29–3.26 (m, 1H, CH), 1.38 (s, 3H, CH3), 1.05 (br s, 1H, CH), 0.99–0.95 (m, 2H, CH), 0.86 (br s, 1H, CH), 0.71 (t, J = 7.2 Hz, 3H, CH3);13C NMR (150 MHz, CDCl3) δ: 195.7, 173.9, 165.8, 164.9, 163.3, 145.4, 141.6, 132.7, 130.4, 128.4, 127.9, 127.8, 127.7, 126.5, 113.3, 110.1, 108.5, 106.0, 104.7, 63.2, 55.4, 54.4, 53.4, 51.7, 47.5, 39.9, 29.1, 20.8, 20.0, 13.7; IR (KBr) υ: 3456, 3071, 2952, 2869, 2587, 2027, 1742, 1710, 1672, 1605, 1579, 1511, 1483, 1432, 1381, 1324, 1243, 1173, 1127, 1045, 1023, 982, 955, 913, 869, 836, 810, 730 cm-1; MS (m/z): HRMS (ESI) Calcd. for C33H34ClN2O7 ([M+H]+): 605.2062. Found: 605.2067.

Dimethyl 1-benzyl-5-chloro-8-methoxy-2-(4- methoxybenzoyl)-2-oxo-2,9a-dihydrospiro-[indoline-3,1- quinolizine]-3,4-dicarboxylate (1i)

Yellow solid, 89 %, m.p. 150.0–150.3 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.54 (d, J = 7.2 Hz, 2H, ArH), 7.25 (d, J = 6.6 Hz, 1H, ArH), 7.18 (d, J = 6.6 Hz, 1H, ArH), 7.13 (br s, 2H, ArH), 7.01 (s, 1H, ArH), 6.97–6.95 (m, 4H, ArH), 6.82 (d, J = 7.8 Hz, 1H, ArH), 6.43 (d, J = 7.8 Hz, 1H, CH), 5.36 (s, 1H, CH), 5.05 (s, 1H, CH), 4.66 (d, J = 7.2 Hz, 1H, CH), 4.60–4.54 (m, 2H, CH2), 3.95 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 3.77 (brs, 1H, CH), 3.47 (s, 3H, OCH3), 2.93 (s, 3H, OCH3);13C NMR (150 MHz, CDCl3)δ: 195.5, 174.5, 165.7, 164.8, 163.5, 153.7, 145.2, 141.4, 135.0, 130.7, 130.6, 130.2, 128.8, 128.6, 128.4, 127.8, 127.7, 127.5, 127.1, 113.5, 113.4, 109.1, 100.2, 83.0, 64.0, 58.4, 55.5, 55.3, 54.1, 53.5, 53.4, 51.9, 47.3, 43.9, 18.4, 15.3; IR (KBr) υ: 3457, 2954, 1745, 1707, 1671, 1628, 1600, 1511, 1484, 1455, 1435, 1377, 1339, 1251, 1226, 1178, 1136, 979, 944, 902, 868, 845, 808, 757 cm-1; MS (m/z): HRMS (ESI) Calcd. for C36H32Cl2N2O8 ([M+H]+): 655.1842. Found: 655.1841.

Dimethyl 1-benzyl-5-chloro-8-methoxy-2-(4- methylbenzoyl)-2-oxo-2,9a-dihydrospiro-[indoline-3,1- quinolizine]-3,4-dicarboxylate (1j)

Yellow solid, 84 %, m.p. 162.3–163.1 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.42 (d, J = 7.8 Hz, 2H, ArH), 7.27–7.24 (m, 3H, ArH), 7.18 (d, J = 7.2 Hz, 1H, ArH), 7.14 (t, J = 7.2 Hz, 2H, ArH), 7.00 (s, 1H, ArH), 6.96 (d, J = 7.8 Hz, 2H, ArH), 6.82 (d, J = 8.4 Hz, 1H, ArH), 6.43 (d, J = 8.4 Hz, 1H, CH), 5.37 (s, 1H, CH), 5.06 (s, 1H, CH), 4.66 (d, J = 7.2 Hz, 1H, CH), 4.49 (br s, 2H, CH2), 3.95 (s, 3H, OCH3), 3.75 (brs, 1H, CH), 3.48 (s, 3H, OCH3), 2.91 (s, 3H, OCH3), 2.36 (s, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 196.8, 174.4, 173.4, 165.7, 164.8, 153.7, 145.2, 143.7, 141.4, 135.1, 135.0, 134.8, 129.2, 128.9, 128.8, 128.7, 128.5, 128.3, 127.9, 127.8, 127.7, 127.5, 127.3, 126.9, 100.1, 83.0, 63.9, 55.1, 54.0, 53.5, 51.9, 47.8, 43.9, 21.7, 21.6; IR (KBr) υ: 3455, 2945, 1744, 1716, 1672, 1626, 1600, 1480, 1456, 1432, 1388, 1370, 1317, 1246, 1231, 1175, 1135, 1043, 977, 947, 918, 869, 838, 814, 784 cm-1; MS (m/z): HRMS (ESI) Calcd. for C36H32ClN2O7 ([M+H]+): 639.1893. Found: 639.1898.

Dimethyl 1-benzyl-5-fluoro-8-methoxy-2-(4- methoxybenzoyl)-2-oxo-2,9a-dihydrospiro-[indoline-3,1- quinolizine]-3,4-dicarboxylate (1k)

Yellow solid, 91 %, m.p. 147.1–148.0 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.54 (d, J = 8.4 Hz, 2H, ArH), 7.18 (t, J = 7.2 Hz, 1H, ArH), 7.13 (d, J = 7.2 Hz, 2H, ArH), 7.04 (t, J = 8.4 Hz, 1H, ArH), 6.96 (t, J = 7.8 Hz, 4H, ArH), 6.79–6.78 (m, 2H, ArH), 6.43 (d, J = 7.8 Hz, 1H, CH), 5.35 (s, 1H, CH), 5.04 (d, J = 3.0 Hz, 1H, CH), 4.65 (d, J = 6.6 Hz, 1H, CH), 4.56 (brs, 2H, CH2), 3.95 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.78 (br s, 1H, CH), 3.47 (s, 3H, OCH3), 2.93 (s, 3H, OCH3);13C NMR (150 MHz, DMSO-d6)δ: 195.3, 173.6, 165.0, 164.0, 163.3, 157.9 (d, J = 236.9 Hz), 153.0, 144.8, 139.1, 135.6, 130.2, 129.6, 129.3, 128.5, 127.4, 127.3, 127.2, 115.1 (d, J = 23.1 Hz), 114.3 (d, J = 28.2 Hz), 113.6, 109.4 (d, J = 6.2 Hz), 106.1, 99.7, 82.8, 63.3, 56.0, 55.5, 54.5, 53.8, 53.4, 51.6, 46.4, 43.0, 18.5; IR (KBr) υ: 3450, 1737, 1641, 1488, 1422, 1369, 1285, 1232, 1187, 1111, 952, 865, 816, 774 cm-1; MS (m/z): HRMS (ESI) Calcd. for C36H32FN2O8 ([M+H]+): 639.2137. Found: 639.2142.

Dimethyl 1-benzyl-5-fluoro-8-methoxy-2-(4-methylbenzoyl)-2-oxo-2,9a-dihydrospiro[indo line-3,1-quinolizine]-3,4-dicarboxylate (1l)

Yellow solid, 87 %, m.p. 158.5–159.0 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.42 (d, J = 7.8 Hz, 2H, ArH), 7.24 (t, J = 7.8 Hz, 2H, ArH), 7.18 (t, J = 7.2 Hz, 1H, ArH), 7.14 (t, J = 7.2 Hz, 2H, ArH), 7.06 (t, J = 8.4 Hz, 1H, ArH), 6.97 (t, J = 7.2 Hz, 2H, ArH), 6.81–6.77 (m, 2H, ArH), 6.43 (d, J = 8.4 Hz, 1H, CH), 5.37 (s, 1H, CH), 5.05 (d, J = 8.4 Hz, 1H, CH), 4.66 (d, J = 7.8 Hz, 1H, CH), 4.48 (brs, 2H, CH2), 3.95 (s, 3H, OCH3), 3.76 (brs, 1H, CH), 3.48 (s, 3H, OCH3), 2.91 (s, 3H, OCH3), 2.36 (s, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 196.9, 174.6, 165.7, 164.8, 159.0 (d, J = 240 Hz), 153.6, 145.2, 143.7, 138.8, 135.2 134.8, 128.9, 128.8, 128.3, 127.7, 115.4 (d, J = 25.4 Hz), 115.1 (d, J = 23.4 Hz), 108.7 (d, J = 7.5 Hz), 106.5, 100.2, 83.1, 63.9, 55.2, 54.1, 53.5, 51.8, 47.7, 43.9, 21.6; IR (KBr) υ: 3454, 2946, 1745, 1715, 1675, 1625, 1597, 1487, 1454, 1434, 1387, 1317, 1297, 1243, 1227, 1179, 1153, 1128, 1045, 981, 947, 892, 868, 843, 809, 767 cm-1; MS (m/z): HRMS (ESI) Calcd. for C36H32FN2O7 ([M+H]+): 623.2188. Found: 623.2190.

Dimethyl 1-benzyl-5-fluoro-8-methoxy-2-benzoyl-2-oxo- 2,9a-dihydrospiro[indoline-3,1-quinolizine]-3,4- dicarboxylate (1m)

Yellow solid, 81 %, m.p. 137.2–137.6 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.63 (brs, 1H, ArH), 7.46–7.44 (m, 4H, ArH), 7.17 (brs, 3H, ArH), 7.08 (brs, 1H, ArH), 7.02 (brs, 2H, ArH), 6.83–6.77 (m, 2H, ArH), 6.44 (d, J = 8.4 Hz, 1H, CH), 5.39 (s, 1H, CH), 5.06 (brs, 1H, CH), 4.66 (d, J = 5.4 Hz, 1H, CH), 4.46 (d, J = 15.0 Hz, 1H, CH), 4.36 (d, J = 15.0 Hz, 1H, CH), 3.96 (s, 3H, OCH3), 3.75 (br s, 1H, CH), 3.50 (s, 3H, OCH3), 2.88 (s, 3H, OCH3);13C NMR (150 MHz, CDCl3)δ: 197.5, 174.5, 165.7, 164.7, 159.0 (d, J = 239.9 Hz), 153.6, 145.2, 138.9, 137.5, 135.3, 132.9, 128.8, 128.7, 128.2, 128.1, 127.8, 127.6, 115.4 (d, J = 21.2 Hz), 115.2 (d, J = 19.7 Hz), 108.7 (d, J = 8.4 Hz), 106.3, 100.3, 83.1, 63.8, 55.1, 54.0, 53.5, 51.9, 48.1, 43.9; IR (KBr) υ: 3450, 2948, 1752, 1712, 1647, 1631, 1598, 1488, 1436, 1388, 1335, 1296, 1227, 1155, 1131, 1051, 980, 940, 908, 894, 862, 826, 768 cm-1; MS (m/z): HRMS (ESI) Calcd. for C35H30FN2O7 ([M+H]+): 609.2032. Found: 609.2034.

Dimethyl 1-butyl-5-chloro-8-methoxy-2-(4- methylbenzoyl)-2-oxo-2,9a-dihydrospiro[indo-line-3,1- quinolizine]-3,4-dicarboxylate (1n)

Yellow solid, 93 %, m.p. 162.1–163.0 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.41 (d, J = 8.4 Hz, 2H, ArH), 7.30 (dd, J1 = 8.4 Hz, J2 = 1.8 Hz, 1H, ArH), 6.98 (d, J = 1.8 Hz, 1H, ArH), 6.90 (dd, J1 = 5.7 Hz, J2 = 3.0 Hz, 3H, ArH), 6.43 (d, J = 7.8 Hz, 1H, CH), 5.26 (s, 1H, CH), 4.98 (d, J = 3.0 Hz, 1H, CH), 4.70 (dd, J1 = 7.8 Hz, J2 = 1.8 Hz, 1H, CH), 3.95 (s, 3H, OCH3), 3.85 (br s, 1H, CH), 3.79 (s, 3H, OCH3), 3.47 (s, 3H, OCH3), 3.38–3.33 (m, 1H, CH), 3.30–3.27 (m, 1H, CH), 3.18 (s, 3H, OCH3), 1.10–1.05 (m, 1H, CH), 1.00–0.96 (m, 2H, CH), 0.94–0.89 (m, 1H, CH), 0.71 (t, J = 7.2 Hz, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 195.7, 174.1, 165.7, 164.8, 163.3, 163.2, 153.6, 145.2, 141.8, 130.4, 128.8, 128.6, 128.0, 127.7, 125.8, 113.6, 113.3, 108.4, 106.8, 102.5, 100.1, 83.1, 63.7, 57.6, 55.4, 55.2, 54.1, 53.4, 51.8, 47.5, 39.9, 29.3, 20.1, 13.6; IR (KBr) υ: 3450, 2953, 1737, 1713, 1670, 1626, 1601, 1574, 1510, 1483, 1459, 1432, 1384, 1323, 1246, 1175, 1133, 1116, 1027, 979, 940, 915, 873, 848, 812, 780 cm-1; MS (m/z): HRMS (ESI) Calcd. for C33H34ClN2O8 ([M+H]+): 621.1998. Found: 621.1997.

Dimethyl 1-butyl-5-fluoro-8-methoxy-2-(4- methylbenzoyl)-2-oxo-2,9a-dihydrospiro[indo-line-3,1- quinolizine]-3,4-dicarboxylate (1o)

Yellow solid, 90 %, m.p. 176.7–177.2 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.28 (d, J = 8.4 Hz, 2H, ArH), 7.17 (d, J = 7.8 Hz, 2H, ArH), 7.10 (td, J1 = 9.0 Hz, J2 = 2.4 Hz, 1H, ArH), 6.87 (dd, J1 = 8.4 Hz, J2 = 4.2 Hz, 1H, ArH), 6.75 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 1H, ArH), 6.43 (d, J = 7.8 Hz, 1H, CH), 5.27 (s, 1H, CH), 4.97 (d, J = 3.6 Hz, 1H, CH), 4.70 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 1H, CH), 3.95 (s, 3H, OCH3), 3.86 (br s, 1H, CH), 3.48 (s, 3H, OCH3), 3.30–3.20 (m, 2H, CH), 3.18 (s, 3H, OCH3), 2.31 (s, 3H, CH3), 1.09–1.03 (m, 1H, CH), 1.02–0.97 (m, 2H, CH), 0.92–0.85 (m, 1H, CH), 0.72 (t, J = 7.2 Hz, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 197.2, 174.1, 165.7, 164.8, 158.9 (d, J = 239.4 Hz), 153.5, 145.2, 143.5, 139.2, 135.0, 129.1, 128.8, 128.3, 128.1, 115.4 (d, J = 25.1 Hz), 107.9 (d, J = 8.3 Hz), 106.6, 102.6, 100.2, 83.2, 63.6, 57.6, 55.1, 54.1, 53.4, 51.8, 47.8, 39.9, 29.2, 21.6, 20.1, 13.7; IR (KBr) υ: 3452, 2951, 1751, 1709, 1676, 1629, 1599, 1491, 1456, 1437, 1378, 1322, 1275, 1229, 1197, 1181, 1159, 1134, 1048, 1005, 975, 940, 901, 868, 839, 823, 761 cm-1; MS (m/z): HRMS (ESI) Calcd. for C33H34FN2O7 ([M+H]+): 589.2345. Found: 589.2345.

Dimethyl 1-benzyl-2-(4-methylbenzoyl)-2,8-dioxo- 2,8,9,9a-tetrahydrospiro[indoline-3,1-quinolizine]-3,4- dicarboxylate (2a)

White solid, m.p. 188.8–188.9 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.59 (br s, 2H, ArH), 7.36 (br s, 1H, ArH), 7.19–7.13 (m, 8H, ArH), 6.80 (br s, 2H, ArH), 6.56 (brs, 1H, CH), 5.28 (br s, 2H, CH), 4.46 (d, J = 13.2 Hz, 1H, CH), 4.39 (d, J = 15.6 Hz, 1H, CH), 4.29 (d, J = 15.6 Hz, 1H, CH), 4.06 (s, 3H, OCH3), 3.51 (s, 3H, OCH3), 2.40 (s, 3H, CH3), 2.22 (d, J = 15.6 Hz, 1H, CH), 1.89 (t, J = 15.6 Hz, 1H, CH); 13C NMR (150 MHz, CDCl3)δ: 195.4, 190.3, 174.3, 165.3, 164.0, 144.4, 142.7, 134.6, 134.0, 129.6, 129.2, 128.8, 128.6, 127.7, 127.1, 127.0, 124.2, 123.9, 109.6, 107.3, 106.0, 59.0, 53.8, 52.0, 51.8, 45.9, 44.2, 36.1, 21.7; IR (KBr) υ: 3453, 1752, 1715, 1664, 1637, 1593, 1487, 1466, 1453, 1367, 1326, 1292, 1254, 1218, 1183, 1129, 1106, 945, 904, 795, 754 cm-1; MS (m/z): HRMS (ESI) Calcd. for C35H30N2NaO7 ([M+Na]+): 613.1945. Found: 613.1947.

Dimethyl 1-benzyl-5-chloro-2-(4-methylbenzoyl)-2,8-dioxo-2,8,9,9a-tetrahydrospiro[indo line-3,1-quinolizine]-3,4-dicarboxylate (2b)

White solid, m.p. 181.1–181.3 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.89 (br s, 2H, ArH), 7.59 (br s, 1H, ArH), 7.47 (br s, 1H, ArH), 7.29 (br s, 5H, ArH), 7.13 (br s, 4H, ArH, CH), 5.34 (s, 1H, CH), 4.91 (brs, 2H, CH), 4.66–4.63 (m, 2H, CH), 3.99 (s, 3H, OCH3), 3.47 (s, 3H, OCH3), 2.38 (s, 3H, CH3), 1.87 (br s, 2H, CH); 13C NMR (150 MHz, CDCl3)δ: 197.6, 190.3, 172.4, 164.9, 164.0, 144.7, 144.2, 144.0, 141.0, 135.1, 134.7, 129.8, 129.6, 129.4, 128.9, 128.7, 128.1, 127.6, 125.5, 110.7, 107.7, 102.6, 54.9, 53.8, 52.3, 51.0, 44.2, 43.3, 36.3, 21.7; IR (KBr) υ: 3452, 2956, 1740, 1713, 1678, 1633, 1594, 1479, 1439, 1383, 1326, 1300, 1249, 1186, 1131, 1081, 1002, 956, 936, 898, 883, 855, 815, 781, 737, 704 cm-1; MS (m/z): HRMS (ESI) Calcd. for C35H30ClN2O7 ([M+H]+): 625.1736. Found: 625.1745.

General procedure for the three-component reaction of quinoline, DMAD, and 3-methyleneoxindoles

A mixture of quinoline (1.5 mmol), DMAD (1.5 mmol, 0.213 g), and 3-methyleneoxindole (1.0 mmol) in 10.0 mL of dimethoxyethane (DME) was stirred at room temperature for 6 h. Then, the solvent was removed by evaporation and the residue was quickly subjected to thin-layer chromatography (15 × 25 cm SiO2 plate) with a mixture of light petroleum and ethyl acetate (V/V = 2:1) as the developing reagent.

Dimethyl 1-benzyl-5-chloro-3-(4-methylbenzoyl)-2-oxo- 3,4a-dihydrospiro[indoline-3,4-pyrido[1,2-a]quinoline]- 1,2-dicarboxylate (3a)

Yellow solid, 40 %, m.p. 183–186 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.36 (br s, 2H, ArH), 7.23 (b rs, 2H, ArH), 7.16 (br s, 4H, ArH), 6.98–6.93 (m, 2H, ArH), 6.86 (br s, 4H, ArH), 6.65 (br s, 1H, ArH), 6.57 (br s, 1H, ArH), 6.33 (d, J = 5.4 Hz, 1H, CH), 5.42 (s, 1H, CH), 5.33 (brs, 1H, CH), 4.72–4.61 (br s, 3H, CH), 3.88 (s, 3H, OCH3), 3.61 (s, 3H, OCH3), 2.33 (s, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 195.4, 173.8, 166.0, 165.2, 146.1, 143.7, 141.5, 138.1, 134.7, 134.6, 129.9, 129.2, 129.1, 128.7, 128.5, 128.4, 128.1, 127.8, 127.7, 126.9, 126.7, 122.4, 121.6, 118.9, 118.0, 114.7, 109.2, 65.0, 59.3, 53.1, 52.3, 49.4, 44.1; IR (KBr) υ: 3448, 2949, 1721, 1701, 1683, 1640, 1571, 1490, 1432, 1382, 1356, 1302, 1242, 1179, 1114, 972, 817 cm-1; MS (m/z): HRMS (ESI) Calcd. for C39H32ClN2O6 ([M+H]+): 659.1943. Found: 659.1941.

Dimethyl 1-benzyl-5-chloro-3-(4-chlorobenzoyl)-2-oxo- 3,4a-dihydrospiro[indoline-3,4-pyrido[1,2-a]quinoline]- 1,2-dicarboxylate (3b)

Yellow solid, 52 %, m.p. 171–173 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.45 (br s, 4H, ArH), 7.22 (br s, 4H, ArH), 7.02 (br s, 1H, ArH), 6.87 (brs, 5H, ArH), 6.66 (br s, 2H, ArH), 6.35 (br s, 1H, CH), 5.45 (br s, 1H, CH), 5.34 (br s, 1H, CH), 4.76–4.64 (m, 3H, CH), 3.89 (s, 3H, OCH3), 3.62 (s, 3H, OCH3);13C NMR (150 MHz, DMSO-d6)δ: 194.8, 172.6, 165.4, 164.4, 150.5, 144.9, 141.7, 138.6, 137.5, 135.9, 135.2, 135.0, 129.8, 129.5, 128.9, 128.5, 128.3, 128.1, 128.0, 127.9, 127.4, 127.0, 126.1, 125.8, 122.4, 121.4, 118.6, 118.3, 113.9, 110.1, 64.3, 58.0, 53.1, 48.7, 43.2; IR (KBr) υ: 3448, 2949, 1722, 1702, 1641, 1614, 1490, 1433, 1401, 1382, 1356, 1304, 1241, 1190, 1130, 1090, 1015, 968, 917, 850, 817 cm-1; MS (m/z): HRMS (ESI) Calcd. for C38H29Cl2N2O6 ([M+H]+): 679.1397. Found: 679.1392.

Dimethyl 1-benzyl-5-fluoro-3-benzoyl-2-oxo-3,4a- dihydrospiro[indoline-3,4-pyrido[1,2-a]-quinoline]-1,2- dicarboxylate (3c)

Yellow solid, 55 %, m.p. 166–167 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.58 (br s, 1H, ArH), 7.41–7.36 (m, 4H, ArH), 7.21 (br s, 4H, ArH), 6.95–6.80 (m, 6H, ArH), 6.56 (br s, 1H, ArH), 6.41–6.40 (m, 1H, ArH), 6.34–6.33 (m, 1H, CH), 5.44 (s, 1H, CH), 5.32 (d, J = 6.6 Hz, 1H, CH), 4.68–4.61 (m, 3H, CH), 3.89 (s, 3H, OCH3), 3.63 (s, 3H, OCH3);13C NMR (150 MHz, DMSO-d6) δ: 195.8, 172.9, 165.5, 164.5, 157.2 (d, J = 236.4 Hz), 150.5, 145.0, 139.3, 137.5, 136.5, 136.0, 135.3, 133.4, 129.8, 128.6, 127.9, 127.8, 127.6, 127.4, 126.9, 126.2 (d, J = 8.7 Hz), 122.3, 121.4, 118.7, 118.5, 115.5 (d, J = 25.7 Hz), 114.8 (d, J = 23.0 Hz), 113.9, 109.5 (d, J = 8.3 Hz), 64.3, 58.4, 53.1, 52.3, 48.9, 43.3; IR (KBr) υ: 3448, 2952, 1737, 1711, 1633, 1605, 1571, 1491, 1437, 1407, 1383, 1360, 1180, 1114, 1081, 1014, 967, 875, 819, 768 cm-1; MS (m/z): HRMS (ESI) Calcd. for C38H30FN2O6 ([M+H]+): 629.2082. Found: 629.2078.

Dimethyl 1-benzyl-5-fluoro-3-(4-chlorobenzoyl)-2-oxo- 3,4a-dihydrospiro[indoline-3,4-pyrido[1,2-a]quinoline]- 1,2-dicarboxylate (3d)

Yellow solid, 53 %, m.p. 170–171 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.45 (br s, 4H, ArH), 7.22 (br s, 4H, ArH), 6.90 (br s, 6H, ArH), 6.65 (br s, 1H, ArH), 6.42–6.35 (m, 2H, ArH, CH), 5.44 (s, 1H, CH), 5.35 (brs, 1H, CH), 4.76–4.65 (m, 3H, CH), 3.88 (s, 3H, OCH3), 3.62 (s, 3H, OCH3);13C NMR (150 MHz, DMSO-d6) δ: 194.8, 172.8, 165.5, 164.4, 157.3 (d, J = 239.1 Hz), 144.9, 139.2, 138.5, 137.5, 135.3, 135.1, 129.8, 129.5, 128.9, 128.5, 127.9, 127.8, 127.4, 127.0, 126.0 (d, J = 9.2 Hz), 122.4, 121.5, 118.5, 115.6 (d, J = 17.0 Hz), 115.0 (d, J = 18.6 Hz), 113.9, 109.6, 64.3, 58.1, 53.1, 52.3, 48.7, 43.3; IR (KBr) υ: 3450, 2949, 1712, 1634, 1570, 1491, 1454, 1431, 1405, 1382, 1351, 1245, 1178, 1092, 967, 852, 820, 776 cm-1; MS (m/z): HRMS (ESI) Calcd. for C38H29ClFN2O6 ([M+H]+): 663.1693. Found: 663.1692.

Dimethyl 1-butyl-5-chloro-3-(4-methoxybenzoyl)-2-oxo- 3,4a-dihydrospiro[indoline-3,4-pyrido[1,2-a]quinoline]- 1,2-dicarboxylate (3e)

Yellow solid, 60 %, m.p. 186–189 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.34 (br s, 2H, ArH), 7.22 (br s, 1H, ArH), 7.05 (br s, 1H, ArH), 6.93 (brs, 1H, ArH), 6.87 (br s, 4H, ArH), 6.76 (br s, 1H, ArH), 6.62 (br s, 1H, ArH), 6.35 (br s, 1H, CH), 5.44 (s, 1H, CH), 5.32–5.29 (m, 2H, CH), 4.59 (s, 1H, CH), 3.88 (s, 3H, OCH3), 3.76 (s, 3H, OCH3), 3.61 (s, 3H, OCH3), 3.44 (brs, 2H, CH), 1.03–1.02 (m, 4H, CH), 0.76 (brs, 3H, CH3);13C NMR (150 MHz, DMSO-d6) δ: 194.1, 172.5, 165.5, 164.6, 163.2, 144.9, 142.2, 137.6, 129.9, 129.8, 129.5, 128.1, 128.0, 127.8, 126.5, 125.3, 122.2, 121.4, 118.9, 118.4, 113.8, 113.7, 109.4, 64.0, 58.3, 55.4, 53.0, 52.2, 48.9, 28.7, 19.4, 13.5; IR (KBr) υ: 3452, 2947, 1739, 1716, 1680, 1603, 1572, 1490, 1434, 1381, 1355, 1309, 1252, 1210, 1179, 1135, 1022, 968, 883, 816, 779 cm-1; MS (m/z): HRMS (ESI) Calcd. for C36H34ClN2O7 ([M+H]+): 641.2049. Found: 649.2045.

3-Ethyl 1,2-dimethyl 1-benzyl-5-methyl-2-oxo- 3,4a-dihydrospiro[indoline-3,4-pyrido-[1,2-a]quinoline]- 1,2,3-tricarboxylate (3f)

Yellow solid, 50 %, m.p. 117–115 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.38–7.18 (m, 6H, ArH), 6.94–6.82 (m, 5H, ArH), 6.52 (br s, 1H, ArH), 6.29 (br s, 1H, CH), 5.35 (b rs, 1H, CH), 5.02 (br s, 1H, CH), 4.88 (br s, 1H, CH), 4.50 (s, 1H, CH), 4.26 (s, 1H, CH), 3.87 (s, 3H, OCH3), 3.70 (s, 3H, OCH3), 3.35–3.54 (m, 2H, CH2), 1.74 (s, 3H, CH3), 0.38–0.37 (m, 3H, CH3);13C NMR (150 MHz, DMSO-d6)δ: 173.2, 168.1, 165.3, 164.7, 144.8, 141.1, 137.7, 136.1, 130.0, 129.4, 128.7, 128.5, 127.8, 127.6, 127.5, 127.4, 124.6, 122.1, 121.5, 118.9, 115.8, 114.0, 108.4, 63.9, 60.2, 58.2, 53.0, 52.2, 47.0, 43.3, 20.0, 12.8; IR (KBr) υ: 3452, 2951, 1742, 1709, 1604, 1572, 1496, 1457, 1435, 1381, 1352, 1307, 1253, 1218, 1184, 1161, 1119, 1088, 1019, 981, 810, 776 cm-1; MS (m/z): HRMS (ESI) Calcd. for C35H33N2O7 ([M+H]+): 593.2282. Found: 593.2285.

3-Ethyl 1,2-dimethyl 1-benzyl-2-oxo-3,4a- dihydrospiro[indoline-3,4-pyrido[1,2-a]quino-line]- 1,2,3-tricarboxylate (3g)

Yellow solid, 63 %, m.p. 176–177 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.42–7.37 (m, 4H, ArH), 7.30 (br s, 1H, ArH), 7.17 (br s, 1H, ArH), 7.05 (brs, 1H, ArH), 6.92 (br s, 2H, ArH), 6.85–6.82 (m, 2H, ArH), 6.69 (br s, 1H, ArH), 6.52 (br s, 1H, ArH), 6.32 (br s, 1H, CH), 5.38 (br s, 1H, CH), 5.06 (d, J = 15.0 Hz, 1H, CH), 4.90 (d, J = 15.0 Hz, 1H, CH), 4.56 (s, 1H, CH), 4.28 (s, 1H, CH), 3.86 (s, 3H, OCH3), 3.70 (s, 3H, OCH3), 3.53 (br s, 1H, CH), 3.48 (brs, 1H, CH), 0.33 (brs, 3H, CH3);13C NMR (150 MHz, DMSO-d6)δ: 173.4, 168.1, 165.3, 164.6, 145.0, 143.6, 137.3, 136.0, 129.6, 128.8, 128.5, 127.7, 127.6, 127.5, 126.5, 124.7, 122.3, 121.4, 121.1, 118.9, 115.3, 113.9, 109.0, 64.1, 60.3, 58.0, 53.0, 52.2, 48.0, 43.3, 12.8; IR (KBr) υ: 3452, 2950, 1740, 1707, 1610, 1571, 1493, 1463, 1435, 1384, 1357, 1307, 1282, 1252, 1221, 1177, 1132, 1087, 1020, 981, 902, 875, 831, 813, 783 cm-1; MS (m/z): HRMS (ESI) Calcd. for C34H31N2O7 ([M+H]+): 579.2126. Found: 579.2131.

3-Ethyl 1,2-dimethyl 1-benzyl-5-chloro-2-oxo- 3,4a-dihydrospiro[indoline-3,4-pyrido-[1,2-a]quinoline]- 1,2,3-tricarboxylate (3h)

Yellow solid, 70 %, m.p. 173–174 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.39–7.36 (m, 4H, ArH), 7.31–7.30 (m, 1H, ArH), 7.20 (t, J = 7.8 Hz, 1H, ArH), 7.13 (d, J = 8.4 Hz, 1H, ArH), 6.95–6.90 (m, 3H, ArH), 6.84 (d, J = 7.2 Hz, 1H, ArH), 6.60 (brs, 1H, ArH), 6.35 (d, J = 9.6 Hz, 1H, CH), 5.37 (dd, J1 = 9.6 Hz, J2 = 3.6 Hz, 1H, CH), 5.07 (d, J = 15.6 Hz, 1H, CH), 4.90 (d, J = 15.6 Hz, 1H, CH), 4.58 (s, 1H, CH), 4.29 (s, 1H, CH), 3.87 (s, 3H, OCH3), 3.71 (s, 3H, OCH3), 3.61–3.56 (m, 2H, CH2), 0.42 (t, J = 7.2 Hz, 3H, CH3);13C NMR (150 MHz, DMSO-d6)δ: 172.9, 168.1, 165.2, 164.5, 144.6, 142.4, 137.3, 135.7, 129.8, 128.6, 128.0, 127.7, 127.6, 126.9, 126.5, 125.5, 122.4, 121.3, 118.5, 115.7, 113.7, 110.3, 63.7, 60.5, 58.3, 53.1, 52.3, 47.8, 43.4, 12.8; IR (KBr) υ: 3448, 2949, 1735, 1712, 1603, 1570, 1493, 1457, 1434, 1364, 1341, 1311, 1250, 1212, 1179, 1140, 1087, 1016, 977, 812, 775 cm-1; MS (m/z): HRMS (ESI) Calcd. for C34H30ClN2O7 ([M+H]+): 613.1736. Found: 613.1739.

3-Ethyl 1,2-dimethyl 1-butyl-5-chloro-2-oxo-3,4a-dihydrospiro[indoline-3,4-pyrido[1,2-a] quinoline]-1,2,3-tricarboxylate (3i)

Yellow solid, 73 %, m.p. 158–159 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.20–7.18 (m, 2H, ArH), 7.05 (d, J = 7.8 Hz, 1H, ArH), 6.92–6.91 (m, 2H, ArH), 6.86–6.85 (m, 1H, ArH), 6.65 (br s, 1H, ArH), 6.38 (d, J = 9.6 Hz, 1H, CH), 5.37 (d, J = 6.6 Hz, 1H, CH), 4.52 (s, 1H, CH), 4.21 (s, 1H, CH), 3.87 (s, 3H, OCH3), 3.74 (br s, 2H, CH2), 3.69 (s, 3H, OCH3), 3.63–3.62 (m, 2H, CH2), 1.57 (brs, 2H, CH2), 1.35–1.34 (m, 2H, CH2), 0.93 (br s, 3H, CH3), 0.61 (brs, 3H, CH3);13C NMR (150 MHz, DMSO-d6)δ: 172.6, 172.6, 168.1, 165.2, 164.5, 144.6, 142.8, 137.4, 129.8, 128.6, 127.9, 127.6, 126.9, 126.6, 125.2, 122.4, 121.3, 118.5, 115.6, 113.8, 109.9, 63.5, 60.4, 58.2, 53.0, 52.2, 47.9, 29.0, 19.4, 13.5, 13.1; IR (KBr) υ: 3454, 2956, 1744, 1713, 1639, 1614, 1598, 1570, 1490, 1433, 1378, 1355, 1325, 1303, 1247, 1212, 1183, 1135, 1116, 1021, 989, 969, 944, 914, 868, 822, 780 cm-1; MS (m/z): HRMS (ESI) Calcd. for C31H32ClN2O7 ([M+H]+): 579.1893. Found: 579.1894.

3-Ethyl 1,2-dimethyl 1-benzyl-5-fluoro-2-oxo-3,4a- dihydrospiro[indoline-3,4-pyrido-[1,2-a]quinoline]- 1,2,3-tricarboxylate (3j)

Yellow solid, 65 %, m.p. 160–163 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.40–7.37 (m, 4H, ArH), 7.30 (br s, 1H, ArH), 7.20 (br s, 1H, ArH), 7.94–7.63 (m, 4H, ArH), 6.85 (br s, 1H, ArH), 6.43 (br s, 1H, ArH), 6.36 (d, J = 8.4 Hz, 1H, CH), 5.40 (br s, 1H, CH), 5.08 (d, J = 15.6 Hz, 1H, CH), 4.90 (d, J = 15.6 Hz, 1H, CH), 4.60 (s, 1H, CH), 4.30 (s, 1H, CH), 3.87 (s, 3H, OCH3), 3.70 (s, 3H, OCH3), 3.59–3.55 (m, 2H, CH2), 0.38 (brs, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 174.0, 168.6, 165.8, 165.1, 158.1 (d, J = 239.6 Hz), 145.6, 139.7, 137.9, 135.3, 129.8, 128.8, 128.2, 128.0, 127.9, 127.6, 127.1 (d, J = 7.8 Hz), 122.5, 121.6, 118.3, 115.9, 115.6 (d, J = 26.0 Hz), 115.0 (d, J = 23.3 Hz), 114.4, 109.0 (d, J = 8.0 Hz), 64.5, 60.9, 59.3, 53.1, 52.2, 48.4, 44.4, 13.3; IR (KBr) υ: 3451, 2950, 1739, 1708, 1608, 1571, 1494, 1456, 1436, 1344, 1307, 1252, 1226, 1175, 1131, 1020, 979, 900, 875, 827, 775 cm-1; MS (m/z): HRMS (ESI) Calcd. for C34H30FN2O7 ([M+H]+): 597.2032. Found: 597.2034.

General procedure for the Diels–Alder reaction of spiro[indoline-3,1-quinolizines]

A mixture of spiro[indoline-3,1-quinolizine] (1.0 mmol) and N-substituted maleimide or maleic anhydride (1.5 mmol) in 10.0 mL of DME was refluxed for 12 h. Then, the solvent was removed by evaporation and the residue was subjected to thin-layer chromatography with a mixture of light petroleum and ethyl acetate (V/V = 2:1) as the developing reagent to give the pure spiro compound 4a4g.

Spiro compounds (4a)

White solid, 80 %, m.p. 297–298 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.60 (d, J = 8.4 Hz, 2H, ArH), 7.44 (t, J = 7.8 Hz, 2H, ArH), 7.38 (t, J = 7.2 Hz, 1H, ArH), 7.19 (t, J = 7.2 Hz, 1H, ArH), 7.14 (t, J = 7.2 Hz, 2H, ArH), 7.05 (t, J = 8.4 Hz, 1H, ArH), 6.99–6.97 (m, 6H, ArH), 6.79 (dd, J1 = 9.0 Hz, J2 = 4.2 Hz, 1H, ArH), 6.61–6.60 (m, 1H, ArH), 5.77 (d, J = 5.4 Hz, 1H, CH), 5.20 (s, 1H, CH), 4.59 (br s, 2H, CH2), 4.32–4.31 (m, 1H, CH), 4.15 (s, 1H, CH), 4.00 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 3.54 (dd, J1 = 7.5 Hz, J2 = 3.0 Hz, 1H, CH), 3.48 (dd, J1 = 7.5 Hz, J2 = 3.0 Hz, 1H, CH), 3.34 (br s, 3H, OCH3), 2.66 (s, 1H, CH), 0.52 (s, 3H, CH3);13C NMR (150 MHz, DMSO-d6)δ: 194.6, 175.1, 174.5, 174.1, 165.3, 164.5, 163.1, 157.7 (d, J = 236.4 Hz), 146.5, 140.6, 138.5, 135.6, 131.8, 130.1, 129.8, 129.0, 128.6, 128.5, 127.5, 127.4, 126.6, 126.0 (d, J = 9.5 Hz), 122.6, 117.2 (d, J = 24.8 Hz), 114.6 (d, J = 23.6 Hz), 113.5, 109.8 (d, J = 7.2 Hz), 94.6, 60.7, 55.5, 53.3, 51.9, 50.8, 49.8, 45.9, 43.1, 42.2, 38.5, 18.9; IR (KBr) υ: 3450, 2951, 1778, 1711, 1670, 1590, 1488, 1459, 1434, 1376, 1345, 1324, 1244, 1176, 1123, 1033, 987, 950, 903, 843, 811 cm-1; MS (m/z): HRMS (ESI) Calcd. for C46H39FN3O9 ([M+H]+): 796.2665. Found: 796.2670.

Spiro compounds (4b)

White solid, 77 %, m.p. >300 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.49 (d, J = 7.8 Hz, 2H, ArH), 7.43 (t, J = 7.8 Hz, 2H, ArH), 7.38 (t, J = 7.8 Hz, 1H, ArH), 7.26–7.25 (m, 3H, ArH), 7.19 (t, J = 7.2 Hz, 1H, ArH), 7.14 (t, J = 7.2 Hz, 2H, ArH), 7.00–6.99 (m, 4H, ArH), 6.83–6.82 (m, 2H, ArH), 5.74 (d, J = 5.4 Hz, 1H, CH), 5.21 (s, 1H, CH), 4.54 (br s, 2H, CH2), 4.32–4.30 (m, 1H, CH), 4.15 (s, 1H, CH), 4.00 (s, 3H, OCH3), 3.54 (dd, J1 = 7.5 Hz, J2 = 3.0 Hz, 1H, CH), 3.47 (dd, J1 = 7.5 Hz, J2 = 3.0 Hz, 1H, CH), 3.35 (s, 3H, OCH3), 2.64 (s, 1H, CH), 2.37 (s, 3H, CH3), 0.50 (s, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 196.0, 175.0, 174.7, 173.8, 166.0, 165.1, 146.8, 143.7, 141.7, 140.9, 135.0, 134.7, 131.3, 131.1, 129.3, 129.0, 128.9, 128.4, 128.3, 128.0, 127.4, 126.6, 126.1, 109.8, 96.5, 61.6, 53.7, 52.1, 51.3, 50.4, 46.0, 44.2, 42.6, 39.2, 21.6, 19.4; IR (KBr) υ: 3452, 2952, 1781, 1712, 1641, 1483, 1430, 1384, 1322, 1233, 1186, 1129, 949, 887, 803 cm-1; MS (m/z): HRMS (ESI) Calcd. for C46H39ClN3O8 ([M+H]+): 796.2420. Found: 796.2429.

Spiro compounds (4c)

White solid, 72 %, m.p. 173–175 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.46 (d, J = 8.4 Hz, 2H, ArH), 7.22 (d, J = 7.8 Hz, 2H, ArH), 7.09 (t, J = 8.4 Hz, 1H, ArH), 6.91–6.86 (m, 5H, ArH), 6.57 (d, J = 6.6 Hz, 1H, ArH), 5.81 (d, J = 4.2 Hz, 1H, CH), 5.09 (s, 1H, CH), 4.31 (br s, 1H, CH), 4.04 (s, 1H, CH), 4.00 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 3.53–3.52 (m, 1H, CH), 3.46–3.45 (m, 1H, CH), 3.37 (brs, 1H, CH), 3.28 (s, 3H, OCH3), 3.26 (br s, 1H, CH), 2.61 (s, 1H, CH), 2.29 (s, 3H, CH3), 1.04–1.01 (m, 3H, CH), 0.84–0.82 (m, 1H, CH), 0.74–0.71 (m, 6H, CH3);13C NMR (150 MHz, DMSO-d6)δ: 196.1, 173.7, 170.9, 169.5, 165.3, 164.5, 157.2 (d, J = 235.2 Hz), 146.3, 143.3, 139.3, 134.6, 138.7, 127.7, 124.5 (d, J = 8.9 Hz), 116.4 (d, J = 25.2 Hz), 114.8 (d, J = 23.1 Hz), 109.3 (d, J = 8.9 Hz), 95.1, 93.6, 58.4, 55.1, 53.4, 51.6, 50.9, 49.9, 47.8, 47.5, 43.0, 37.5, 28.5, 21.0, 19.2, 13.5; IR (KBr) υ: 3457, 2956, 1712, 1600, 1514, 1489, 1455, 1386, 1322, 1237, 1178, 1131, 1025, 962, 808, 758 cm-1; MS (m/z): HRMS (ESI) Calcd. for C44H42FN3NaO9 ([M+Na]+): 798.2797. Found: 798.2783.

Spiro compounds (4d)

White solid, 85 %, m.p. 182–185 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.51 (d, J = 8.4 Hz, 2H, ArH), 7.46 (d, J = 8.4 Hz, 2H, ArH), 7.11–7.08 (m, 1H, ArH), 7.05 (d, J = 8.4 Hz, 2H, ArH), 6.91–6.90 (m, 3H, ArH), 6.57 (d, J = 8.4 Hz, 1H, ArH), 5.82 (d, J = 1.8 Hz, 1H, CH), 5.09 (s, 1H, CH), 4.32 (br s, 1H, CH), 4.06 (s, 1H, CH), 4.00 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 3.55–3.54 (m, 1H, CH), 3.48–3.47 (m, 1H, CH), 3.35 (br s, 5H, CH, OCH3), 2.62 (s, 1H, CH), 1.03 (br s, 3H, CH), 0.82 (brs, 1H, CH), 0.73–0.72 (m, 6H, CH3);13C NMR (150 MHz, CDCl3)δ: 195.0, 174.7, 174.6, 173.6, 166.0, 165.1, 163.4, 158.5 (d, J = 239.9 Hz), 146.6, 141.7, 138.8, 134.7, 130.4, 129.8, 129.4, 127.4, 126.2 (d, J = 8.6 Hz), 123.0, 118.8 (d, J = 25.8 Hz), 115.1 (d, J = 23.1 Hz), 113.4, 108.4 (d, J = 8.4 Hz), 96.6, 61.2, 55.4, 53.5, 51.9, 51.2, 50.5, 47.6, 46.0, 42.6, 40.2, 39.3, 29.0, 20.1, 19.7, 13.6; IR (KBr) υ: 3458, 2957, 1781, 1714, 1677, 1598, 1491, 1455, 1384, 1325, 1240, 1280, 1130, 1093, 1020, 960, 908, 868, 835, 807 cm-1; MS (m/z): HRMS (ESI) Calcd. for C43H40ClFN3O9 ([M+H]+): 796.2432. Found: 796.2432.

Spiro compounds (4e)

White solid, 86 %, m.p. 230–233 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.53–7.49 (m, 4H, ArH), 7.09–7.06 (m, 1H, ArH), 7.04 (d, J = 8.4 Hz, 2H, ArH), 6.92–6.90 (m, 3H, ArH), 6.60 (d, J = 8.4 Hz, 1H, ArH), 5.13 (s, 1H, CH), 4.63 (d, J = 4.2 Hz, 1H, CH), 4.05 (br s, 1H, CH), 4.02 (s, 3H, OCH3), 3.99 (s, 1H, CH), 3.80 (s, 3H, OCH3), 3.58–3.56 (m, 1H, CH), 3.48–3.43 (m, 1H, CH), 3.40–3.39 (m, 1H, CH), 3.36 (s, 3H, OCH3), 3.32 (br s, 1H, CH), 2.75 (s, 1H, CH), 1.46 (s, 3H, CH3), 1.03–1.01 (m, 1H, CH), 0.93–0.91 (m, 2H, CH), 0.80–0.79 (m, 1H, CH), 0.67 (d, J = 7.2 Hz, 3H, CH3);13C NMR (150 MHz, CDCl3)δ: 195.2, 175.1, 174.4, 173.4, 166.1, 165.2, 163.5, 158.3 (d, J = 240.2 Hz), 146.6, 139.6, 138.0, 134.7, 130.6, 130.2, 129.8, 129.4, 127.3, 127.2 (d, J = 8.9 Hz), 122.3, 117.4 (d, J = 25.5 Hz), 115.0 (d, J = 23.4 Hz), 113.4, 108.4 (d, J = 8.0 Hz), 97.0, 61.8, 55.7, 55.4, 53.5, 51.3, 50.4, 46.6, 45.0, 42.7, 40.2, 34.6, 29.0, 20.0, 19.5, 13.6; IR (KBr) υ: 3457, 2958, 1747, 1712, 1601, 1492, 1446, 1426, 1384, 1355, 1318, 1264, 1236, 1175, 1138, 1022, 956, 918, 896, 876, 825, 803 cm-1; MS (m/z): HRMS (ESI) Calcd. for C43H30ClFN3O9 ([M+H]+): 796.2432. Found: 796.2429.

Spiro compounds (4f)

White solid, 90 %, m.p. >300 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.43 (d, J = 4.8 Hz, 2H, ArH), 7.27 (d, J = 7.2 Hz, 1H, ArH), 6.90 (br s, 3H, ArH), 6.84 (br s, 1H, ArH), 5.50 (s, 1H, CH), 4.89 (d, J = 3.0 Hz, 1H, CH), 4.47 (brs, 1H, CH), 4.00 (s, 3H, OCH3), 3.98 (s, 1H, CH), 3.79 (s, 3H, OCH3), 3.77–3.75 (m, 1H, CH), 3.69 (br s, 1H, CH), 3.36 (br s, 4H, CH, OCH3), 3.26–3.24 (m, 1H, CH), 2.74 (s, 3H, OCH3), 2.54 (s, 1H, CH), 1.00 (br s, 3H, CH), 0.82–0.78 (m, 1H, CH), 0.70 (br s, 3H, CH3); IR (KBr) υ: 3453, 2957, 1861, 1779, 1699, 1675, 1641, 1584, 1511, 1483, 1455, 1433, 1368, 1342, 1321, 1269, 1232, 1203, 1170, 1129, 1086, 1049, 1017, 972, 942, 924, 879, 841, 811 cm-1; MS (m/z): HRMS (ESI) Calcd. for C37H35ClN2NaO11 ([M+Na]+): 741.1822. Found: 741.1808.

Spiro compounds (4g)

White solid, 88 %, m.p. 283–285 C; 1H NMR (600 MHz, DMSO-d6)δ: 7.30 (d, J = 8.4 Hz, 2H, ArH), 7.17 (d, J = 7.8 Hz, 2H, ArH), 7.08 (td, J1 = 9.3 Hz, J2 = 2.4 Hz, 1H, ArH), 6.88 (dd, J1 = 8.4 Hz, J2 = 4.2 Hz, 1H, ArH), 6.61 (dd, J1 = 9.3 Hz, J2 = 2.4 Hz, 1H, ArH), 5.06 (s, 1H, CH), 4.92 (dd, J1 = 6.6 Hz, J2 = 2.4 Hz, 1H, CH), 4.48 (dd, J1 = 6.6 Hz, J2 = 3.6 Hz, 1H, CH), 4.00–3.99 (m, 4H, CH, OCH3), 3.76 (dd, J1 = 7.5 Hz, J2 = 3.6 Hz, 1H, CH), 3.67 (dd, J1 = 7.5 Hz, J2 = 3.6 Hz, 1H, CH), 3.36 (s, 3H, OCH3), 3.28–3.27 (m, 1H, CH), 3.20–3.19 (m, 1H, CH), 2.71 (s, 3H, OCH3), 2.56 (s, 1H, CH), 2.31 (s, 3H, CH3), 1.02 (br s, 3H, CH), 0.81–0.79 (m, 1H, CH), 0.71 (d, J = 7.2 Hz, 3H, CH3);13C NMR (150 MHz, DMSO-d6)δ: 194.8, 175.3, 174.2, 174.1, 165.4, 164.6, 163.1, 157.5 (d, J = 236.1 Hz), 146.5, 140.6, 139.0, 138.2, 130.0, 129.8, 129.4, 129.1, 126.3, 125.9 (d, J = 8.3 Hz), 122.7, 117.3 (d, J = 22.5 Hz), 114.7 (d, J = 23.3 Hz), 113.4, 109.3, 94.5, 60.2, 55.4, 53.3, 51.8, 50.8, 49.7, 47.0, 45.8, 42.1, 28.7, 20.6, 19.4, 19.2, 13.4; IR (KBr) υ: 3456, 2956, 1864, 1780, 1740, 1697, 1641, 1585, 1489, 1455, 1435, 1382, 1339, 1320, 1267, 1232, 1202, 1177, 1120, 1086, 1046, 1017, 979, 929, 872, 816, 792 cm-1; MS (m/z): HRMS (ESI) Calcd. for C37H35FN2NaO10 ([M+Na]+): 709.2168. Found: 709.2158.

Supporting information

1H and 13C NMR spectra and 2D NMR for all new compounds are available. Crystallographic data 1c (CCDC 916455), 1h (CCDC 916456), 1m (CCDC 916457), 2b (CCDC 916458), 3e (CCDC 928874), 3i (CCDC 928875), 4d (CCDC 928873) have been deposited at the Cambridge Crystallographic Database Centre and are available on request (http://www.ccdc.cam.ac.uk).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21272200) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. We thank the Analysis and Test Center of Yangzhou University for providing instruments for analysis.

References

  • 1.Sundberg RJ. The chemistry of indoles. New York: Academic Press; 1996. [Google Scholar]
  • 2.Abdel-Rahman AH, Keshk EM, Hanna MA, El-Bady ShM. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg Med Chem. 2004;12:2483–2488. doi: 10.1016/j.bmc.2003.10.063. [DOI] [PubMed] [Google Scholar]
  • 3.Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, Ertl P, Waldmann H. Charting biologically relevant chemical space: a structural classification of natural products (SCONP) Proc Natl Acad Sci USA. 2005;102:17272–17277. doi: 10.1073/pnas.0503647102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ashimori A, Bachand B, Overman LE, Poon DJ. Catalytic asymmetric synthesis of quaternary carbon centers. Exploratory investigations of intramolecular heck reactions of (E)-α,β-unsaturated 2-haloanilides and analogues to form enantioenriched spirocyclic products. J Am Chem Soc. 1998;120:6477–6487. doi: 10.1021/ja980786p. [DOI] [Google Scholar]
  • 5.Sebahar PR, Williams RM. The asymmetric total synthesis of (+)- and (-)-spirotryprostatin B. J Am Chem Soc. 2000;122:5666–5667. doi: 10.1021/ja001133n. [DOI] [Google Scholar]
  • 6.iKotha SB, Deb AC, Lahiri K, Manivannan E. Selected synthetic strategies to spirocyclics. Synthesis. 2009;2:165–193. [Google Scholar]
  • 7.Singh GS, Desta ZY. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem Rev. 2012;112:6104–6155. doi: 10.1021/cr300135y. [DOI] [PubMed] [Google Scholar]
  • 8.Liu YY, Wang H, Wan JP. Recent advances in diversity oriented synthesis through isatin-based multicomponent reactions. Asian J Org Chem. 2013;2:374–386. doi: 10.1002/ajoc.201200180. [DOI] [Google Scholar]
  • 9.Trost BM, Brennan MK. Asymmetric syntheses of oxindole and indole spirocyclic alkaloid natural products. Synthesis. 2009;18:3003–3025. doi: 10.1055/s-0029-1216975. [DOI] [Google Scholar]
  • 10.Ball-Jones NR, Badillo JJ, Franz AK. Strategies for the enantioselective synthesis of spirooxindoles. Org Biomol Chem. 2012;10:5165–5181. doi: 10.1039/c2ob25184a. [DOI] [PubMed] [Google Scholar]
  • 11.Hong L, Wang R. Recent advances in asymmetric organocatalytic construction of 3,3-spirocyclic oxindoles. Adv Synth Catal. 2013;355:1023–1052. doi: 10.1002/adsc.201200808. [DOI] [Google Scholar]
  • 12.Tan B, Candeias NR, Barbas CF., III Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst. Nat Chem. 2011;3:473–477. doi: 10.1038/nchem.1039. [DOI] [PubMed] [Google Scholar]
  • 13.Bergonzini G, Melchiorre P. Dioxindole in asymmetric catalytic synthesis: routes to enantioenriched 3-substituted 3-hydroxyoxindoles and the preparation of maremycin A. Angew Chem Int Ed. 2012;51:971–974. doi: 10.1002/anie.201107443. [DOI] [PubMed] [Google Scholar]
  • 14.Duan SW, Li Y, Liu YY, Zou YQ, Shi DQ, Xiao WJ. An organocatalytic Michael-aldol cascade: formal [3+2] annulation to construct enantioenriched spirocyclic oxindole derivatives. Chem Commun. 2012;48:5160–5162. doi: 10.1039/c2cc30931a. [DOI] [PubMed] [Google Scholar]
  • 15.Awata A, Arai T. Catalytic asymmetric exo’-selective [3+2] cycloaddition for constructing stereochemically diversified spiro[pyrrolidin-3,3-oxindole]s. Chem Eur J. 2012;18:8278–8282. doi: 10.1002/chem.201201249. [DOI] [PubMed] [Google Scholar]
  • 16.Trost BM, Hirano K. Dinuclear zinc catalyzed asymmetric spirannulation reaction: an umpolung strategy for formation of α-alkylated-α-hydroxyoxindoles. Org Lett. 2012;14:2446–2449. doi: 10.1021/ol300577y. [DOI] [PubMed] [Google Scholar]
  • 17.Wu L, Sun J, Yan CG. Facile synthesis of spiro[indoline-3,3-pyrrolo[1,2-a]quinolines] and spiro[indoline-3,1-pyrrolo[2,1-a]isoquinolines] via 1,3-dipolar cycloaddition reactions of heteroaromatic ammonium salts with 3-phenacylideneoxindoles. Org Biomol Chem. 2012;10:9452–9463. doi: 10.1039/c2ob26849c. [DOI] [PubMed] [Google Scholar]
  • 18.Nair V, Rajesh C, Vinod AU, Bindu S, Sreekanth AR, Mathen JS, Balagopal L. Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc Chem Res. 2003;36:899–907. doi: 10.1021/ar020258p. [DOI] [PubMed] [Google Scholar]
  • 19.Nair V, Menon RS, Sreekanth A, Abhilash N, Biju AT. Engaging zwitterions in carbon-carbon and carbon-nitrogen bond-forming reactions: a promising synthetic strategy. Acc Chem Res. 2006;39:520–530. doi: 10.1021/ar0502026. [DOI] [PubMed] [Google Scholar]
  • 20.Nair V, Screekanth AR, Abhilash N, Biju AT, Devi BR, Rajeev SM, Nigam PR, Srinivas Novel pyridine-catalyzed reaction of dimethyl acetylenedicarboxylate with aldehydes and N-tosylimines: efficient synthesis of 2-benzoylfumarates and 1-azadienes. Synthesis. 2003;12:1895–1902. doi: 10.1055/s-2003-41000. [DOI] [Google Scholar]
  • 21.Yavari I, Hossaini Z, Sabbaghan M, Ghazanfarpour-Darjani Reaction of N-heterocycles with acetylenedicarboxylates in the presence of N-alkylisatins or ninhydrin. Efficient synthesis of spiro compounds. Manatsh Chem. 2007;138:677–681. doi: 10.1007/s00706-007-0662-x. [DOI] [Google Scholar]
  • 22.Nair V, Devipriya S, Suresh E (2008) Construction of heterocycles via 1,4-dipolar cycloaddition of quinolinee DMAD zwitterion with various dipolarophiles. Tetrahedron 64:3567–3577. doi:10.1016/j.tet.2008.01.106
  • 23.Yang HB, Guan XY, Wei Y, Shi M. A three-component condensation for the construction of the spiro[indoline-3,3-piperidin]-2-one skeleton. Eur J Org Chem. 2012;14:2792–2800. doi: 10.1002/ejoc.201200185. [DOI] [Google Scholar]
  • 24.Sun J, Sun Y, Gong H, Xie YJ, Yan CG. Facile synthesis of dispirooxindole-fused heterocycles via domino 1,4-dipolar addition and Diels–Alder reaction of in situ generated Huisgen 1,4-dipoles. Org Lett. 2012;14:5172–5175. doi: 10.1021/ol302530m. [DOI] [PubMed] [Google Scholar]
  • 25.Autrey RL, Tahk FC (1967) The synthesis and stereochemistry of some isatylideneacetic acid derivatives. Tetrahedron 23:901–917. doi:10.1016/0040-4020(67)85040-3
  • 26.Kloek C, Jin X, Choi K, Khosla C, Madrid PB, Spencer A, Raimundo BC, Boardman P, Lanza G, Griffin JH (2011) Acylideneoxoindoles: a new class of reversible inhibitors of human transglutaminase 2. Bioorg Med Chem Lett 21:2692–2696. doi:10.1016/j.bmcl.2010.12.037 [DOI] [PMC free article] [PubMed]
  • 27.Krow GR, Huang Q, Szczepanski SW, Hausheer FH, Caroll PJ. Stereoselectivity in Diels–Alder reactions of diene-substituted N-alkoxycarbonyl-1,2-dihydropyridines. J Org Chem. 2007;72:3458–3466. doi: 10.1021/jo0700575. [DOI] [PubMed] [Google Scholar]
  • 28.Barbe G, Charette AB. Total synthesis of (+)-lepadin B: stereoselective synthesis of nonracemic polysubstituted hydroquinolines using an RC-ROM process. J Am Chem Soc. 2008;130:13873–13875. doi: 10.1021/ja8068215. [DOI] [PubMed] [Google Scholar]
  • 29.Harrison DP, Iovan DA, Myers WH, Sabat M, Wang S, Zottig VE, Harman WD (2011) [4+2] Cyclocondensation reactions of Tungsten–dihydropyridine complexes and the generation of tri- and tetrasubstituted piperidines. J Am Chem Soc 133:18378–18387. doi:10.1021/ja2075086 [DOI] [PubMed]
  • 30.Chou SS, Wang HC, Chen PW, Yang CH. [4+2] Cycloaddition reactions of 4-sulfur-substituted 2-pyridones with electron-deficient dienophiles. Tetrahedron. 2008;64:5291–5297. doi: 10.1016/j.tet.2008.03.030. [DOI] [Google Scholar]
  • 31.Nakano H, Osone K, Takeshita M, Kwon E, Seki C, Matsuyama N, Kohari Y. A novel chiral oxazolidine organocatalyst for the synthesis of anoseltamivir intermediate using a highly enantioselective Diels–Alder reaction of 1,2-dihydropyridine. Chem Commun. 2010;46:4827–4829. doi: 10.1039/c0cc00110d. [DOI] [PubMed] [Google Scholar]
  • 32.Suttibut C, Kohari Y, Igarashi K, Nakano H, Hirama M, Seki C, Matsuyama H, Uwai K, Takano N, Okuyama Y, Osone K, Takeshita M, Kwon E. A highly enantioselective Diels–Alder reaction of 1,2-dihydropyridine using a simple β-amino alcohol organocatalyst for a practical synthetic methodology of oseltamivir intermediate. Tetrahedron Lett. 2011;52:4745–4748. doi: 10.1016/j.tetlet.2011.06.109. [DOI] [Google Scholar]
  • 33.Comins DL, Bharathi P, Sahn JJ. Studies toward the synthesis of spirolucidine. Preparation of ABC and EF ring fragments. Tetrahedron Lett. 2012;53:1347–1350. doi: 10.1016/j.tetlet.2011.12.127. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Molecular Diversity are provided here courtesy of Springer

RESOURCES