Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jun;76(6):2649–2653. doi: 10.1073/pnas.76.6.2649

lac repressor changes conformation upon binding to poly[dA-T)]

D E Kelsey, T C Rounds, S S York
PMCID: PMC383665  PMID: 379862

Abstract

N-(Iodoacetylaminoethyl)-1-naphthylamine-5-sulfonate reacts with Escherichia coli lac repressor to selectively label cysteine-140 with the fluorescent N-(acetylaminoethyl)-1-naphthylamine-5-sulfonate group. The fluorescence intensity of this label decreases by 20% when labeled repressor associates with poly[d(A-T)]. Fifteen base pairs of poly[d(A-T)] per repressor tetramer are required to complete this decrease. Stopped-flow experiments have shown that the repressor undergoes at least two conformational changes as it binds to poly[d(A-T)], with half-lives of 5.0 +/- 1.2 msec and 3.5 +/- 1.0 sex. Quite likely, these conformational changes serve to strengthen the interaction of repressor with DNA.

Full text

PDF
2649

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barkley M. D., Riggs A. D., Jobe A., Burgeois S. Interaction of effecting ligands with lac repressor and repressor-operator complex. Biochemistry. 1975 Apr 22;14(8):1700–1712. doi: 10.1021/bi00679a024. [DOI] [PubMed] [Google Scholar]
  2. Beyreuther K., Adler K., Geisler N., Klemm A. The amino-acid sequence of lac repressor. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3576–3580. doi: 10.1073/pnas.70.12.3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourgeois S., Pfahl M. Repressors. Adv Protein Chem. 1976;30:1–99. doi: 10.1016/s0065-3233(08)60478-7. [DOI] [PubMed] [Google Scholar]
  4. Burgum A. A., Matthews K. S. Lactose repressor protein modified with fluorescein mercuric acetate. J Biol Chem. 1978 Jun 25;253(12):4279–4286. [PubMed] [Google Scholar]
  5. Butler A. P., Revzin A., von Hippel P. H. Molecular parameters characterizing the interaction of Escherichia coli lac repressor with non-operator DNA and inducer. Biochemistry. 1977 Nov 1;16(22):4757–4768. doi: 10.1021/bi00641a001. [DOI] [PubMed] [Google Scholar]
  6. Coulondre C., Miller J. H. Genetic studies of the lac repressor. III. Additional correlation of mutational sites with specific amino acid residues. J Mol Biol. 1977 Dec 15;117(3):525–567. doi: 10.1016/0022-2836(77)90056-0. [DOI] [PubMed] [Google Scholar]
  7. Gilbert W., Maxam A. The nucleotide sequence of the lac operator. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3581–3584. doi: 10.1073/pnas.70.12.3581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goeddel D. V., Yansura D. G., Caruthers M. H. Binding of synthetic lactose operator DNAs to lactose represessors. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3292–3296. doi: 10.1073/pnas.74.8.3292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hudson E. N., Weber G. Synthesis and characterization of two fluorescent sulfhydryl reagents. Biochemistry. 1973 Oct 9;12(21):4154–4161. doi: 10.1021/bi00745a019. [DOI] [PubMed] [Google Scholar]
  10. Huston J. S., Foo-Penn W. F., Bechtel K. C., Jardetzky O. Characterization of the lac repressor species produced by limited tryptic cleavage. Biochem Biophys Res Commun. 1974 Nov 27;61(2):441–448. doi: 10.1016/0006-291x(74)90976-0. [DOI] [PubMed] [Google Scholar]
  11. Kolchinsky A. M., Mirzabekov A. D., Gilbert W., Li L. Preferential protection of the minor groove of non-operator DNA by lac repressor against methylation by dimethyl sulphate. Nucleic Acids Res. 1976 Jan;3(1):11–18. doi: 10.1093/nar/3.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laiken S. L., Printz M. P. Kinetic class analysis of hydrogen-exchange data. Biochemistry. 1970 Mar 31;9(7):1547–1553. doi: 10.1021/bi00809a011. [DOI] [PubMed] [Google Scholar]
  13. Lin S., Riggs A. D. The general affinity of lac repressor for E. coli DNA: implications for gene regulation in procaryotes and eucaryotes. Cell. 1975 Feb;4(2):107–111. doi: 10.1016/0092-8674(75)90116-6. [DOI] [PubMed] [Google Scholar]
  14. Maurizot J. C., Charlier M., Hélène C. Lac repressor binding to poly (d(A-T)). Conformational changes. Biochem Biophys Res Commun. 1974 Oct 8;60(3):951–957. doi: 10.1016/0006-291x(74)90406-9. [DOI] [PubMed] [Google Scholar]
  15. Müller-Hill B. Lac repressor and lac operator. Prog Biophys Mol Biol. 1975;30(2-3):227–252. doi: 10.1016/0079-6107(76)90011-0. [DOI] [PubMed] [Google Scholar]
  16. Revzin A., von Hippel P. H. Direct measurement of association constants for the binding of Escherichia coli lac repressor to non-operator DNA. Biochemistry. 1977 Nov 1;16(22):4769–4776. doi: 10.1021/bi00641a002. [DOI] [PubMed] [Google Scholar]
  17. Richter P. H., Eigen M. Diffusion controlled reaction rates in spheroidal geometry. Application to repressor--operator association and membrane bound enzymes. Biophys Chem. 1974 Oct;2(3):255–263. doi: 10.1016/0301-4622(74)80050-5. [DOI] [PubMed] [Google Scholar]
  18. Riggs A. D., Bourgeois S., Cohn M. The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol. 1970 Nov 14;53(3):401–417. doi: 10.1016/0022-2836(70)90074-4. [DOI] [PubMed] [Google Scholar]
  19. Wang A. C., Revzin A., Butler A. P., von Hippel P. H. Binding of E.coli lac repressor to non-operator DNA. Nucleic Acids Res. 1977;4(5):1579–1593. doi: 10.1093/nar/4.5.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang J. C., Barkley M. D., Bourgeois S. Measurements of unwinding of lac operator by repressor. Nature. 1974 Sep 20;251(5472):247–249. doi: 10.1038/251247a0. [DOI] [PubMed] [Google Scholar]
  21. Worah D. M., Gibboney K. M., Yang L. M., York S. S. Association of Escherichia coli lac repressor with poly[d(A-T)] monitored with 8-anilino-1-napthalenesulfonate. Biochemistry. 1978 Oct 17;17(21):4487–4492. doi: 10.1021/bi00614a020. [DOI] [PubMed] [Google Scholar]
  22. Wu R., Bahl C. P., Narang S. A. Lactose operator--repressor interaction. Curr Top Cell Regul. 1978;13:137–178. [PubMed] [Google Scholar]
  23. Yang D. S., Burgum A. A., Matthews K. S. Modification of the cysteine residues of the lactose repressor protein using chromophoric probes. Biochim Biophys Acta. 1977 Jul 22;493(1):24–36. doi: 10.1016/0005-2795(77)90257-4. [DOI] [PubMed] [Google Scholar]
  24. York S. S., Lawson R. C., Jr, Worah D. M. Binding of recrystallized and chromatographically purified 8-anilino-1-naphthalenesulfonate to Escherichia coli lac repressor. Biochemistry. 1978 Oct 17;17(21):4480–4486. doi: 10.1021/bi00614a019. [DOI] [PubMed] [Google Scholar]
  25. Zingsheim H. P., Geisler N., Weber K., Mayer F. Complexes of Escherichia coli lac-repressor with non-operator DNA revealed by electron microscopy: two repressor molecules can share the same segment of DNA. J Mol Biol. 1977 Sep 25;115(3):565–570. doi: 10.1016/0022-2836(77)90171-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES