Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jun;76(6):2853–2857. doi: 10.1073/pnas.76.6.2853

Hemoglobin ontogeny during normal mouse fetal development.

T W Brotherton, D H Chui, J Gauldie, M Patterson
PMCID: PMC383707  PMID: 111244

Abstract

Pure populations of large, nucleated erythrocytes derived from yolk sac blood islands were obtained during normal fetal mouse development. Embryonic hemoglobins were present in these cells early in gestation. Later in gestation, an increasing amount of adults hemoglobin was also synthesized and accumulated in this population of primitive nucleated erythrocytes, as demonstrated by both biochemical and immunocytochemical techniques.

Full text

PDF
2853

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E. C., Reese A., Stallings M., Huisman T. H. Separation of human hemoglobins by DEAE-cellulose chromatography using glycine-KCN-NaC1 developers. Hemoglobin. 1976;1(1):27–44. doi: 10.3109/03630267609031020. [DOI] [PubMed] [Google Scholar]
  2. Barker J. E. Development of the mouse hematopoietic system. I. Types of hemoglobin produced in embryonic yolk sac and liver. Dev Biol. 1968 Jul;18(1):14–29. doi: 10.1016/0012-1606(68)90020-1. [DOI] [PubMed] [Google Scholar]
  3. CRAIG M. L., RUSSELL E. S. A DEVELOPMENTAL CHANGE IN HEMOGLOBINS CORRELATED WITH AN EMBRYONIC RED CELL POPULATION IN THE MOUSE. Dev Biol. 1964 Oct;10:191–201. doi: 10.1016/0012-1606(64)90040-5. [DOI] [PubMed] [Google Scholar]
  4. Chui D. H., Loyer B. V. Foetal erythropoiesis in steel mutant mice. II. Haemopoietic stem cells in foetal livers during development. Br J Haematol. 1975 Apr;29(4):553–565. doi: 10.1111/j.1365-2141.1975.tb02742.x. [DOI] [PubMed] [Google Scholar]
  5. Chui D. H., Russell E. S. Fetal erythropoiesis in steel mutant mice. I. A morphological study of erythroid cell development in fetal liver. Dev Biol. 1974 Oct;40(2):256–269. doi: 10.1016/0012-1606(74)90128-6. [DOI] [PubMed] [Google Scholar]
  6. Chui D. H., Sweeney G. D., Patterson M., Russell E. S. Hemoglobin synthesis in siderocytes of flexed-tailed mutant (f/f) fetal mice. Blood. 1977 Jul;50(1):165–177. [PubMed] [Google Scholar]
  7. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  8. Dan M., Hagiwara A. Detection of two types of hemoglobin (HbA and HbF) in single erythrocytes by fluorescent antibody technique. Exp Cell Res. 1967 Jun;46(3):596–598. doi: 10.1016/0014-4827(67)90385-0. [DOI] [PubMed] [Google Scholar]
  9. Fantoni A., Bank A., Marks P. A. Globin composition and synthesis of hemoglobins in developing fetal mice erythroid cells. Science. 1967 Sep 15;157(3794):1327–1329. doi: 10.1126/science.157.3794.1327. [DOI] [PubMed] [Google Scholar]
  10. Fantoni A., De la Chapelle A., Marks P. A. Synthesis of embryonic hemoglobins during erythroid cell development in fetal mice. J Biol Chem. 1969 Feb 25;244(4):675–681. [PubMed] [Google Scholar]
  11. Fantoni A., De la Chapelle A., Rifkind R. A., Marks P. A. Erythroid cell-development in fetal mice: synthetic capacity for different proteins. J Mol Biol. 1968 Apr 14;33(1):79–91. doi: 10.1016/0022-2836(68)90282-9. [DOI] [PubMed] [Google Scholar]
  12. Gilman J. G., Smithies O. Fetal hemoglobin variants in mice. Science. 1968 May 24;160(3830):885–886. doi: 10.1126/science.160.3830.885. [DOI] [PubMed] [Google Scholar]
  13. Jurd R. D., Maclean N. An immunofluorescent study of the haemoglobins in metamorphosing Xenopus laevis. J Embryol Exp Morphol. 1970 Apr;23(2):299–309. [PubMed] [Google Scholar]
  14. Kovach J. S., Marks P. A., Russell E. S., Epler H. Erythroid cell development in fetal mice: ultrastructural characteristics and hemoglobin synthesis. J Mol Biol. 1967 Apr 14;25(1):131–142. doi: 10.1016/0022-2836(67)90284-7. [DOI] [PubMed] [Google Scholar]
  15. Mahoney K. A., Hyer B. J., Chan L. N. Separation of primitive and definitive erythroid cells of the chick embryo. Dev Biol. 1977 Apr;56(2):412–416. doi: 10.1016/0012-1606(77)90280-9. [DOI] [PubMed] [Google Scholar]
  16. Miller R. G., Phillips R. A. Separation of cells by velocity sedimentation. J Cell Physiol. 1969 Jun;73(3):191–201. doi: 10.1002/jcp.1040730305. [DOI] [PubMed] [Google Scholar]
  17. Pine K. S., Tobin A. J. Hemoglobin synthesis in isolated erythroid colonies from the chick embryo. Dev Biol. 1976 Apr;49(2):556–562. doi: 10.1016/0012-1606(76)90198-6. [DOI] [PubMed] [Google Scholar]
  18. Rifkind R. A., Chui D., Epler H. An ultrastructural study of early morphogenetic events during the establishment of fetal hepatic erythropoiesis. J Cell Biol. 1969 Feb;40(2):343–365. doi: 10.1083/jcb.40.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WILLIAMS D. E., REISFELD R. A. DISC ELECTROPHORESIS IN POLYACRYLAMIDE GELS: EXTENSION TO NEW CONDITIONS OF PH AND BUFFER. Ann N Y Acad Sci. 1964 Dec 28;121:373–381. doi: 10.1111/j.1749-6632.1964.tb14210.x. [DOI] [PubMed] [Google Scholar]
  20. Wood W. G., Stamatoyannopoulos G., Lim G., Nute P. E. F-cells in the adult: normal values and levels in individuals with hereditary and acquired elevations of Hb F. Blood. 1975 Nov;46(5):671–682. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES