Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Sep 17;93(19):10256–10261. doi: 10.1073/pnas.93.19.10256

Selective constraints on the activation domain of transcription factor Pit-1.

S Majumdar 1, D M Irwin 1, H P Elsholtz 1
PMCID: PMC38371  PMID: 8816787

Abstract

The POU transcription factor Pit-1 activates members of the prolactin/growth hormone gene family in specific endocrine cell types of the pituitary gland. Although Pit-1 is structurally conserved among vertebrate species, evolutionary changes in the pattern of Pit-1 RNA splicing have led to a notable "contraction" of the transactivation domain in the mammalian lineage, relative to Pit-1 in salmonid fish. By site-directed mutagenesis we demonstrate that two splice insertions in salmon Pit-1, called beta (29 aa) and gamma (33 aa), are critical for cooperative activation of the salmon prolactin gene. Paradoxically, Pit-1-dependent activation of the prolactin gene in rat is enhanced in the absence of the homologous beta-insert sequence. This apparent divergence in the mechanism of activation of prolactin genes by Pit-1 is target gene specific, as activation of rat and salmon growth hormone genes by Pit-1 splice variants is entirely conserved. Our data suggest that efficient activation of the prolactin gene in the vertebrate pituitary has significantly constrained the pattern of splicing within the Pit-1 transactivation domain. Rapid evolutionary divergence of prolactin gene function may have demanded changes in Pit-1/protein interactions to accommodate new patterns of transcriptional control by developmental or physiological factors.

Full text

PDF
10256

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach I., Rhodes S. J., Pearse R. V., 2nd, Heinzel T., Gloss B., Scully K. M., Sawchenko P. E., Rosenfeld M. G. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2720–2724. doi: 10.1073/pnas.92.7.2720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford A. P., Conrad K. E., Wasylyk C., Wasylyk B., Gutierrez-Hartmann A. Functional interaction of c-Ets-1 and GHF-1/Pit-1 mediates Ras activation of pituitary-specific gene expression: mapping of the essential c-Ets-1 domain. Mol Cell Biol. 1995 May;15(5):2849–2857. doi: 10.1128/mcb.15.5.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CLAYTON B. E., WORDEN J. M. Growth in the young hypophysectomized guinea-pig. J Endocrinol. 1960 Feb;20:36–47. doi: 10.1677/joe.0.0200036. [DOI] [PubMed] [Google Scholar]
  4. Carroll S. B. Homeotic genes and the evolution of arthropods and chordates. Nature. 1995 Aug 10;376(6540):479–485. doi: 10.1038/376479a0. [DOI] [PubMed] [Google Scholar]
  5. Chen R. P., Ingraham H. A., Treacy M. N., Albert V. R., Wilson L., Rosenfeld M. G. Autoregulation of pit-1 gene expression mediated by two cis-active promoter elements. Nature. 1990 Aug 9;346(6284):583–586. doi: 10.1038/346583a0. [DOI] [PubMed] [Google Scholar]
  6. Day R. N., Koike S., Sakai M., Muramatsu M., Maurer R. A. Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene. Mol Endocrinol. 1990 Dec;4(12):1964–1971. doi: 10.1210/mend-4-12-1964. [DOI] [PubMed] [Google Scholar]
  7. Du S. J., Devlin R. H., Hew C. L. Genomic structure of growth hormone genes in chinook salmon (Oncorhynchus tshawytscha): presence of two functional genes, GH-I and GH-II, and a male-specific pseudogene, GH-psi. DNA Cell Biol. 1993 Oct;12(8):739–751. doi: 10.1089/dna.1993.12.739. [DOI] [PubMed] [Google Scholar]
  8. Elsholtz H. P., Lew A. M., Albert P. R., Sundmark V. C. Inhibitory control of prolactin and Pit-1 gene promoters by dopamine. Dual signaling pathways required for D2 receptor-regulated expression of the prolactin gene. J Biol Chem. 1991 Dec 5;266(34):22919–22925. [PubMed] [Google Scholar]
  9. Elsholtz H. P., Majumdar-Sonnylal S., Xiong F., Gong Z., Hew C. L. Phylogenetic specificity of prolactin gene expression with conservation of Pit-1 function. Mol Endocrinol. 1992 Apr;6(4):515–522. doi: 10.1210/mend.6.4.1350055. [DOI] [PubMed] [Google Scholar]
  10. Fox S. R., Jong M. T., Casanova J., Ye Z. S., Stanley F., Samuels H. H. The homeodomain protein, Pit-1/GHF-1, is capable of binding to and activating cell-specific elements of both the growth hormone and prolactin gene promoters. Mol Endocrinol. 1990 Jul;4(7):1069–1080. doi: 10.1210/mend-4-7-1069. [DOI] [PubMed] [Google Scholar]
  11. Haugen B. R., Wood W. M., Gordon D. F., Ridgway E. C. A thyrotrope-specific variant of Pit-1 transactivates the thyrotropin beta promoter. J Biol Chem. 1993 Oct 5;268(28):20818–20824. [PubMed] [Google Scholar]
  12. He X., Treacy M. N., Simmons D. M., Ingraham H. A., Swanson L. W., Rosenfeld M. G. Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature. 1989 Jul 6;340(6228):35–41. doi: 10.1038/340035a0. [DOI] [PubMed] [Google Scholar]
  13. Hermesz E., Mackem S., Mahon K. A. Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke's pouch of the mouse embryo. Development. 1996 Jan;122(1):41–52. doi: 10.1242/dev.122.1.41. [DOI] [PubMed] [Google Scholar]
  14. Holmberg M., Leonardsson G., Ny T. The species-specific differences in the cAMP regulation of the tissue-type plasminogen activator gene between rat, mouse and human is caused by a one-nucleotide substitution in the cAMP-responsive element of the promoters. Eur J Biochem. 1995 Jul 15;231(2):466–474. doi: 10.1111/j.1432-1033.1995.tb20720.x. [DOI] [PubMed] [Google Scholar]
  15. Ingraham H. A., Flynn S. E., Voss J. W., Albert V. R., Kapiloff M. S., Wilson L., Rosenfeld M. G. The POU-specific domain of Pit-1 is essential for sequence-specific, high affinity DNA binding and DNA-dependent Pit-1-Pit-1 interactions. Cell. 1990 Jun 15;61(6):1021–1033. doi: 10.1016/0092-8674(90)90067-o. [DOI] [PubMed] [Google Scholar]
  16. Kimura S., Hara Y., Pineau T., Fernandez-Salguero P., Fox C. H., Ward J. M., Gonzalez F. J. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996 Jan 1;10(1):60–69. doi: 10.1101/gad.10.1.60. [DOI] [PubMed] [Google Scholar]
  17. Konzak K. E., Moore D. D. Functional isoforms of Pit-1 generated by alternative messenger RNA splicing. Mol Endocrinol. 1992 Feb;6(2):241–247. doi: 10.1210/mend.6.2.1569967. [DOI] [PubMed] [Google Scholar]
  18. Lew A. M., Elsholtz H. P. Cloning of the human cDNA for transcription factor Pit-1. Nucleic Acids Res. 1991 Nov 25;19(22):6329–6329. doi: 10.1093/nar/19.22.6329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li H., Zeitler P. S., Valerius M. T., Small K., Potter S. S. Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J. 1996 Feb 15;15(4):714–724. [PMC free article] [PubMed] [Google Scholar]
  20. Li S., Crenshaw E. B., 3rd, Rawson E. J., Simmons D. M., Swanson L. W., Rosenfeld M. G. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature. 1990 Oct 11;347(6293):528–533. doi: 10.1038/347528a0. [DOI] [PubMed] [Google Scholar]
  21. Li X., Noll M. Evolution of distinct developmental functions of three Drosophila genes by acquisition of different cis-regulatory regions. Nature. 1994 Jan 6;367(6458):83–87. doi: 10.1038/367083a0. [DOI] [PubMed] [Google Scholar]
  22. Lin C., Lin S. C., Chang C. P., Rosenfeld M. G. Pit-1-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature. 1992 Dec 24;360(6406):765–768. doi: 10.1038/360765a0. [DOI] [PubMed] [Google Scholar]
  23. Mangalam H. J., Albert V. R., Ingraham H. A., Kapiloff M., Wilson L., Nelson C., Elsholtz H., Rosenfeld M. G. A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes Dev. 1989 Jul;3(7):946–958. doi: 10.1101/gad.3.7.946. [DOI] [PubMed] [Google Scholar]
  24. Mastick G. S., McKay R., Oligino T., Donovan K., López A. J. Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast. Genetics. 1995 Jan;139(1):349–363. doi: 10.1093/genetics/139.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morris A. E., Kloss B., McChesney R. E., Bancroft C., Chasin L. A. An alternatively spliced Pit-1 isoform altered in its ability to trans-activate. Nucleic Acids Res. 1992 Mar 25;20(6):1355–1361. doi: 10.1093/nar/20.6.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  27. Nelson C., Albert V. R., Elsholtz H. P., Lu L. I., Rosenfeld M. G. Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science. 1988 Mar 18;239(4846):1400–1405. doi: 10.1126/science.2831625. [DOI] [PubMed] [Google Scholar]
  28. Nowakowski B. E., Maurer R. A. Multiple Pit-1-binding sites facilitate estrogen responsiveness of the prolactin gene. Mol Endocrinol. 1994 Dec;8(12):1742–1749. doi: 10.1210/mend.8.12.7708061. [DOI] [PubMed] [Google Scholar]
  29. Ono M., Harigai T., Kaneko T., Sato Y., Ihara S., Kawauchi H. Pit-1/GH factor-1 involvement in the gene expression of somatolactin. Mol Endocrinol. 1994 Jan;8(1):109–115. doi: 10.1210/mend.8.1.8152425. [DOI] [PubMed] [Google Scholar]
  30. Ono M., Takayama Y., Rand-Weaver M., Sakata S., Yasunaga T., Noso T., Kawauchi H. cDNA cloning of somatolactin, a pituitary protein related to growth hormone and prolactin. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4330–4334. doi: 10.1073/pnas.87.11.4330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Piatigorsky J., Wistow G. The recruitment of crystallins: new functions precede gene duplication. Science. 1991 May 24;252(5009):1078–1079. doi: 10.1126/science.252.5009.1078. [DOI] [PubMed] [Google Scholar]
  32. Planas J. V., Swanson P., Rand-Weaver M., Dickhoff W. W. Somatolactin stimulates in vitro gonadal steroidogenesis in coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol. 1992 Jul;87(1):1–5. doi: 10.1016/0016-6480(92)90142-7. [DOI] [PubMed] [Google Scholar]
  33. Prunet P., Avella M., Fostier A., Björnsson B. T., Boeuf G., Haux C. Roles of prolactin in salmonids. Prog Clin Biol Res. 1990;342:547–552. [PubMed] [Google Scholar]
  34. Rand-Weaver M., Swanson P., Kawauchi H., Dickhoff W. W. Somatolactin, a novel pituitary protein: purification and plasma levels during reproductive maturation of coho salmon. J Endocrinol. 1992 Jun;133(3):393–403. doi: 10.1677/joe.0.1330393. [DOI] [PubMed] [Google Scholar]
  35. Rhodes S. J., DiMattia G. E., Rosenfeld M. G. Transcriptional mechanisms in anterior pituitary cell differentiation. Curr Opin Genet Dev. 1994 Oct;4(5):709–717. doi: 10.1016/0959-437x(94)90138-s. [DOI] [PubMed] [Google Scholar]
  36. Simmons D. M., Voss J. W., Ingraham H. A., Holloway J. M., Broide R. S., Rosenfeld M. G., Swanson L. W. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev. 1990 May;4(5):695–711. doi: 10.1101/gad.4.5.695. [DOI] [PubMed] [Google Scholar]
  37. Smith K. P., Liu B., Scott C., Sharp Z. D. Pit-1 exhibits a unique promoter spacing requirement for activation and synergism. J Biol Chem. 1995 Mar 3;270(9):4484–4491. doi: 10.1074/jbc.270.9.4484. [DOI] [PubMed] [Google Scholar]
  38. Steger D. J., Altschmied J., Büscher M., Mellon P. L. Evolution of placenta-specific gene expression: comparison of the equine and human gonadotropin alpha-subunit genes. Mol Endocrinol. 1991 Feb;5(2):243–255. doi: 10.1210/mend-5-2-243. [DOI] [PubMed] [Google Scholar]
  39. Steinfelder H. J., Radovick S., Mroczynski M. A., Hauser P., McClaskey J. H., Weintraub B. D., Wondisford F. E. Role of a pituitary-specific transcription factor (pit-1/GHF-1) or a closely related protein in cAMP regulation of human thyrotropin-beta subunit gene expression. J Clin Invest. 1992 Feb;89(2):409–419. doi: 10.1172/JCI115600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Theill L. E., Hattori K., Lazzaro D., Castrillo J. L., Karin M. Differential splicing of the GHF1 primary transcript gives rise to two functionally distinct homeodomain proteins. EMBO J. 1992 Jun;11(6):2261–2269. doi: 10.1002/j.1460-2075.1992.tb05285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Verrijzer C. P., Alkema M. J., van Weperen W. W., Van Leeuwen H. C., Strating M. J., van der Vliet P. C. The DNA binding specificity of the bipartite POU domain and its subdomains. EMBO J. 1992 Dec;11(13):4993–5003. doi: 10.1002/j.1460-2075.1992.tb05606.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Voss J. W., Wilson L., Rosenfeld M. G. POU-domain proteins Pit-1 and Oct-1 interact to form a heteromeric complex and can cooperate to induce expression of the prolactin promoter. Genes Dev. 1991 Jul;5(7):1309–1320. doi: 10.1101/gad.5.7.1309. [DOI] [PubMed] [Google Scholar]
  43. Wong E. A., Silsby J. L., el Halawani M. E. Complementary DNA cloning and expression of Pit-1/GHF-1 from the domestic turkey. DNA Cell Biol. 1992 Nov;11(9):651–660. doi: 10.1089/dna.1992.11.651. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES