Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jun;76(6):2871–2875. doi: 10.1073/pnas.76.6.2871

Disparity of gene conversion in frameshift mutants located in locus b2 of Ascobolus immersus

Jean-Luc Rossignol 1, Normand Paquette 1,*
PMCID: PMC383711  PMID: 16592666

Abstract

The frequency of conversion and the disparity in the direction of conversion were studied for six frameshift mutants lying in locus b2 of Ascobolus immersus and giving more 2 wild type:6 mutant (2+6m) than 6 wild type:2 mutant (6+2m) aberrant asci (type B). The frequency of conversion decreased from left to right in the locus. The disparity steadily increased from left to right and then reached a plateau. Twenty-two frameshift mutants giving more 6+2m than 2+6m aberrant asci (type A) and closely linked to three type B mutants were also studied; they showed the same frequency of conversion and the same disparity (but in the opposite direction) as the type B mutant to which they are linked. The polar variation of both the frequency of conversion and the disparity as a function of position were expected on the basis of a previous study of 15 mutants giving postmeiotic segregations and located in locus b2. This variation is assumed to reflect the existence of a preferential region for the initiation of hybrid DNA (HDNA) during recombination and a duality in the distribution of this HDNA, with preponderant asymmetrical HDNA near the starting point and preponderant symmetrical HDNA farther from it.

Keywords: meiosis, octads, genetic markers, polarity, hybrid DNA

Full text

PDF
2871

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Culbertson M. R., Charnas L., Johnson M. T., Fink G. R. Frameshifts and frameshift suppressors in Saccharomyces cerevisiae. Genetics. 1977 Aug;86(4):745–764. doi: 10.1093/genetics/86.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Emerson S., Yu-Sun C. C. Gene Conversion in the Pasadena Strain of ASCOBOLUS IMMERSUS. Genetics. 1967 Jan;55(1):39–47. doi: 10.1093/genetics/55.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Esposito M. S. Postmeiotic segregation in Saccharomyces. Mol Gen Genet. 1971;111(3):297–299. doi: 10.1007/BF00433113. [DOI] [PubMed] [Google Scholar]
  4. Fogel S., Mortimer R., Lusnak K., Tavares F. Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1325–1341. doi: 10.1101/sqb.1979.043.01.152. [DOI] [PubMed] [Google Scholar]
  5. Girard J., Rossignol J. L. The suppression of gene conversion and intragenic crossing over in Ascobolus immersus: evidence for modifiers acting in the heterozygous state. Genetics. 1974 Feb;76(2):221–243. doi: 10.1093/genetics/76.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Leblon G. Mechanism of gene conversion in Ascobolus immersus. II. The relationships between the genetic alterations in b 1 or b 2 mutants and their conversion spectrum. Mol Gen Genet. 1972;116(4):322–335. doi: 10.1007/BF00270089. [DOI] [PubMed] [Google Scholar]
  7. Leblon G., Paquette N. Intragenic suppression at the b2 locus in Ascobolus immersus. I. Identification of three distinct groups of suppression. Genetics. 1978 Nov;90(3):475–488. doi: 10.1093/genetics/90.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leblon G., Rossignol J. L. Mechanism of gene conversion in Ascobolus immersus. 3. The interaction of heteroallelas in the conversion process. Mol Gen Genet. 1973 Apr 12;122(2):165–182. doi: 10.1007/BF00435189. [DOI] [PubMed] [Google Scholar]
  9. Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Olive L. S. ABERRANT TETRADS IN SORDARIA FIMICOLA. Proc Natl Acad Sci U S A. 1959 May;45(5):727–732. doi: 10.1073/pnas.45.5.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paszewski A. Gene conversion: observations on the DNA hybrid models. Genet Res. 1970 Feb;15(1):55–64. doi: 10.1017/s0016672300001373. [DOI] [PubMed] [Google Scholar]
  12. RIZET G., ENGELMANN N., LEFORT C., LISSOUBA P., MOUSSEAU J. [On an Ascomycete of interest for the study of certain aspects of the problem of gene structure]. C R Hebd Seances Acad Sci. 1960 Mar 14;250:2050–2052. [PubMed] [Google Scholar]
  13. Rommelaere J., Miller-Faurès A. Detection by density equilibrium centrifugation of recombinant-like DNA molecules in somatic mammalian cells. J Mol Biol. 1975 Oct 15;98(1):195–218. doi: 10.1016/s0022-2836(75)80109-4. [DOI] [PubMed] [Google Scholar]
  14. Rossignol J. L. Existence of homogeneous categories of mutants exhibiting various conversion patterns in gene 75 of Ascobolus immersus. Genetics. 1969 Dec;63(4):795–805. doi: 10.1093/genetics/63.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WHITEHOUSE H. L. A THEORY OF CROSSING-OVER BY MEANS OF HYBRID DEOXYRIBONUCLEIC ACID. Nature. 1963 Sep 14;199:1034–1040. doi: 10.1038/1991034a0. [DOI] [PubMed] [Google Scholar]
  16. Wagner R. E., Jr, Radman M. A mechanism for initiation of genetic recombination. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3619–3622. doi: 10.1073/pnas.72.9.3619. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES