Abstract
We have determined the variable region sequences of four heavy chains from β(1-6)D-galactan-binding myeloma proteins. Two of these proteins are identical to position 100 which is located in the third complementarity-determining region (CDR-3). The remaining two differ at a total of 8 positions over the first 100 amino acids, and all of the differences can be explained by single-base mutations at the DNA level. When an assessment is made of the protein segment following CDR-3, which has been termed “J segment” or “FR4,” a completely different pattern of variation is observed. The J segments from the four proteins can be divided into two sets. Members of each set share a series of linked amino acids not found in members of the alternative set. The two proteins identical to position 100 have J segments from the two different sets, suggesting that recombination has occurred between V and J genes. An examination of the CDR-3 sequences from the four heavy chains reveals substitutions at positions 100 and 105. Gly is found at 100 in two of the proteins and His in the remaining two. In the two proteins with Gly-100, the following J sequence is limited to one of the two sets of J segments defined by linked amino acids. Similarly, the two heavy chains with His-100 have J segments from the second set. Thus, at the protein level an apparent association is seen between CDR-3 and J segment. If CDR-3 should be found linked to J segment at the DNA level, a new mechanism would be introduced for increasing antibody diversity by recombining various CDR-3 plus J genes with genes coding for the remainder of the variable region. Alternatively, if CDR-3 were coded for by the V gene, then the recombination of V with J may provide an opportunity to introduce mutations in CDR-3. In this case the linkage of amino acids in CDR-3 and the J segments would suggest that recognition signals are used such that certain V genes only pair with a given J gene.
Keywords: Ig heavy chains, amino acid sequence, recombination
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amzel L. M., Poljak R. J., Saul F., Varga J. M., Richards F. F. The three dimensional structure of a combining region-ligand complex of immunoglobulin NEW at 3.5-A resolution. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1427–1430. doi: 10.1073/pnas.71.4.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brack C., Hirama M., Lenhard-Schuller R., Tonegawa S. A complete immunoglobulin gene is created by somatic recombination. Cell. 1978 Sep;15(1):1–14. doi: 10.1016/0092-8674(78)90078-8. [DOI] [PubMed] [Google Scholar]
- Hood L., Loh E., Hubert J., Barstad P., Eaton B., Early P., Fuhrman J., Johnson N., Kronenberg M., Schilling J. The structure and genetics of mouse immunoglobulins: an analysis of NZB myeloma proteins and sets of BALB/c myeloma proteins binding particular haptens. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):817–836. doi: 10.1101/sqb.1977.041.01.092. [DOI] [PubMed] [Google Scholar]
- Hood L., McKean D., Farnsworth V., Potter M. Mouse immunoglobulin chains. A survey of the amino-terminal sequences of kappa chains. Biochemistry. 1973 Feb;12(4):741–749. doi: 10.1021/bi00728a026. [DOI] [PubMed] [Google Scholar]
- Hozumi N., Tonegawa S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3628–3632. doi: 10.1073/pnas.73.10.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jolley M. E., Glaudemans C. P., Rudikoff S., Potter M. Structural requirements for the binding of derivatives of D-galactose to two homogeneous murine immunoglobulins. Biochemistry. 1974 Jul 16;13(15):3179–3184. doi: 10.1021/bi00712a028. [DOI] [PubMed] [Google Scholar]
- Jolley M. E., Rudikoff S., Potter M., Glaudemans C. P. Spectral changes on binding of oligosaccharides to murine immunoglobulin A myeloma proteins. Biochemistry. 1973 Jul 31;12(16):3039–3044. doi: 10.1021/bi00740a015. [DOI] [PubMed] [Google Scholar]
- Kabat E. A., Wu T. T., Bilofsky H. Variable region genes for the immunoglobulin framework are assembled from small segments of DNA--a hypothesis. Proc Natl Acad Sci U S A. 1978 May;75(5):2429–2433. doi: 10.1073/pnas.75.5.2429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKean D. J., Bell M., Potter M. Mechanisms of antibody diversity: multiple genes encode structurally related mouse kappa variable regions. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3913–3917. doi: 10.1073/pnas.75.8.3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mushinski E. B., Potter M. Idiotypes on galactan binding myeloma proteins and anti-galactan antibodies in mice. J Immunol. 1977 Dec;119(6):1888–1893. [PubMed] [Google Scholar]
- Potter M. Antigen-binding myeloma proteins of mice. Adv Immunol. 1977;25:141–211. [PubMed] [Google Scholar]
- Rao D. N., Rudikoff S., Potter M. k Chain variable regions from three galactan binding myeloma proteins. Biochemistry. 1978 Dec 12;17(25):5555–5559. doi: 10.1021/bi00618a035. [DOI] [PubMed] [Google Scholar]
- Rudikoff S., Mushinski E. B., Potter M., Glaudemans C. P., Jolley M. E. Six BALB-c IgA myeloma proteins that bind beta-(1-6)-D-galactan. Partial amino acid sequences and idiotypes. J Exp Med. 1973 Nov 1;138(5):1095–1105. doi: 10.1084/jem.138.5.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudikoff S., Potter M. Size differences among immunoglobulin heavy chains from phosphorylcholine-binding proteins. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2109–2112. doi: 10.1073/pnas.73.6.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segal D. M., Padlan E. A., Cohen G. H., Rudikoff S., Potter M., Davies D. R. The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4298–4302. doi: 10.1073/pnas.71.11.4298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seidman J. G., Leder A., Nau M., Norman B., Leder P. Antibody diversity. Science. 1978 Oct 6;202(4363):11–17. doi: 10.1126/science.99815. [DOI] [PubMed] [Google Scholar]
- Tonegawa S., Hozumi N., Matthyssens G., Schuller R. Somatic changes in the content and context of immunoglobulin genes. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):877–889. doi: 10.1101/sqb.1977.041.01.097. [DOI] [PubMed] [Google Scholar]
- Tonegawa S., Maxam A. M., Tizard R., Bernard O., Gilbert W. Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1485–1489. doi: 10.1073/pnas.75.3.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vrana M., Rudikoff S., Potter M. Heavy-chain variable-region sequence from an inulin-binding myeloma protein. Biochemistry. 1977 Mar 22;16(6):1170–1175. doi: 10.1021/bi00625a022. [DOI] [PubMed] [Google Scholar]
- Vrana M., Rudikoff S., Potter M. Sequence variation among heavy chains from inulin-binding myeloma proteins. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1957–1961. doi: 10.1073/pnas.75.4.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weigert M., Gatmaitan L., Loh E., Schilling J., Hood L. Rearrangement of genetic information may produce immunoglobulin diversity. Nature. 1978 Dec 21;276(5690):785–790. doi: 10.1038/276785a0. [DOI] [PubMed] [Google Scholar]