Abstract
In single crab fibers (Callinectes danae) bathed in Ca2+-free media, Ba2+ action potentials did not elicit tension. In contrast, Sr2+ spikes evoked twitches similar in amplitude to those accompanying the control Ca2+ spikes. Tension development in these fibers, therefore, depends on the ionic species carrying the inward current during membrane excitation. The Ca2" or Sr2+ influx appears insufficient to evoke the observed twitch tensions, and it seems necessary to postulate mobilization of an intracellular source of Ca1+. Procaine, which suppresses release of Ca2+ from sarcoplasmic reticulum, depressed twitch tension but did not reduce the overshoot or duration of Ca2+ or Sr2+ spikes. This finding is compatible with the suggestion that the contractions results from release of Ca2+ from the sarcoplasmic reticulum initiated by signals given by the influx of Ca2+ or Sr2+, but not Ba2+.
Full text
PDF

Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atwater I., Rojas E., Vergara J. Calcium influxes and tension development in perfused single barnacle muscle fibres under membrane potential control. J Physiol. 1974 Dec;243(2):523–551. doi: 10.1113/jphysiol.1974.sp010765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CALDWELL P. C., WALSTER G. STUDIES ON THE MICRO-INJECTION OF VARIOUS SUBSTANCES INTO CRAB MUSCLE FIBRES. J Physiol. 1963 Nov;169:353–372. doi: 10.1113/jphysiol.1963.sp007261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
- FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuchs F. Ion exchange properties of the calcium receptor site of troponin. Biochim Biophys Acta. 1971 Aug 6;245(1):221–229. doi: 10.1016/0005-2728(71)90025-9. [DOI] [PubMed] [Google Scholar]
- GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAGIWARA S., NAKA K. I. THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++. J Gen Physiol. 1964 Sep;48:141–162. doi: 10.1085/jgp.48.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Fukuda J., Eaton D. C. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J Gen Physiol. 1974 May;63(5):564–578. doi: 10.1085/jgp.63.5.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumura M., Mashima H. Contraction produced by intracellular injection of calcium, strontium, and barium in the single crayfish muscle fibers. Jpn J Physiol. 1976;26(2):145–157. doi: 10.2170/jjphysiol.26.145. [DOI] [PubMed] [Google Scholar]
- Orentlicher M., Reuben J. P., Grundfest H., Brandt P. W. Calcium binding and tension development in detergent-treated muscle fibers. J Gen Physiol. 1974 Feb;63(2):168–186. doi: 10.1085/jgp.63.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuben J. P., Brandt P. W., Garcia H., Grundfest H. Excitation-contraction coupling in crayfish. Am Zool. 1967 Aug;7(3):623–645. doi: 10.1093/icb/7.3.623. [DOI] [PubMed] [Google Scholar]
- Suarez-Kurtz G., Reuben J. P., Brandt P. W., Grundfest H. Membrane calcium activation in excitation-contraction coupling. J Gen Physiol. 1972 Jun;59(6):676–688. doi: 10.1085/jgp.59.6.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suarez-Kurtz G., Sorenson A. L. Inhibition by hypertonic solutions of Ca-dependent electrogenesis in single crab muscle fibers. J Gen Physiol. 1977 Oct;70(4):491–505. doi: 10.1085/jgp.70.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeda K. Permeability changes associated with the action potential in procaine-treated crayfish abdominal muscle fibers. J Gen Physiol. 1967 Mar;50(4):1049–1074. doi: 10.1085/jgp.50.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WERMAN R., GRUNDFEST H. Graded and all-or-none electrogenesis in arthropod muscle. II. The effects of alkali-earth and onium ions on lobster muscle fibers. J Gen Physiol. 1961 May;44:997–1027. doi: 10.1085/jgp.44.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber A. The mechanism of the action of caffeine on sarcoplasmic reticulum. J Gen Physiol. 1968 Nov;52(5):760–772. doi: 10.1085/jgp.52.5.760. [DOI] [PMC free article] [PubMed] [Google Scholar]








