Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jun;76(6):3029–3030. doi: 10.1073/pnas.76.6.3029

Dissociation of action potentials from contraction in single crab muscle fibers.

G Suarez-Kurtz, A L Sorenson
PMCID: PMC383745  PMID: 288085

Abstract

In single crab fibers (Callinectes danae) bathed in Ca2+-free media, Ba2+ action potentials did not elicit tension. In contrast, Sr2+ spikes evoked twitches similar in amplitude to those accompanying the control Ca2+ spikes. Tension development in these fibers, therefore, depends on the ionic species carrying the inward current during membrane excitation. The Ca2" or Sr2+ influx appears insufficient to evoke the observed twitch tensions, and it seems necessary to postulate mobilization of an intracellular source of Ca1+. Procaine, which suppresses release of Ca2+ from sarcoplasmic reticulum, depressed twitch tension but did not reduce the overshoot or duration of Ca2+ or Sr2+ spikes. This finding is compatible with the suggestion that the contractions results from release of Ca2+ from the sarcoplasmic reticulum initiated by signals given by the influx of Ca2+ or Sr2+, but not Ba2+.

Full text

PDF
3029

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atwater I., Rojas E., Vergara J. Calcium influxes and tension development in perfused single barnacle muscle fibres under membrane potential control. J Physiol. 1974 Dec;243(2):523–551. doi: 10.1113/jphysiol.1974.sp010765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CALDWELL P. C., WALSTER G. STUDIES ON THE MICRO-INJECTION OF VARIOUS SUBSTANCES INTO CRAB MUSCLE FIBRES. J Physiol. 1963 Nov;169:353–372. doi: 10.1113/jphysiol.1963.sp007261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
  4. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuchs F. Ion exchange properties of the calcium receptor site of troponin. Biochim Biophys Acta. 1971 Aug 6;245(1):221–229. doi: 10.1016/0005-2728(71)90025-9. [DOI] [PubMed] [Google Scholar]
  7. GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HAGIWARA S., NAKA K. I. THE INITIATION OF SPIKE POTENTIAL IN BARNACLE MUSCLE FIBERS UNDER LOW INTRACELLULAR CA++. J Gen Physiol. 1964 Sep;48:141–162. doi: 10.1085/jgp.48.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hagiwara S., Fukuda J., Eaton D. C. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J Gen Physiol. 1974 May;63(5):564–578. doi: 10.1085/jgp.63.5.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Matsumura M., Mashima H. Contraction produced by intracellular injection of calcium, strontium, and barium in the single crayfish muscle fibers. Jpn J Physiol. 1976;26(2):145–157. doi: 10.2170/jjphysiol.26.145. [DOI] [PubMed] [Google Scholar]
  12. Orentlicher M., Reuben J. P., Grundfest H., Brandt P. W. Calcium binding and tension development in detergent-treated muscle fibers. J Gen Physiol. 1974 Feb;63(2):168–186. doi: 10.1085/jgp.63.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reuben J. P., Brandt P. W., Garcia H., Grundfest H. Excitation-contraction coupling in crayfish. Am Zool. 1967 Aug;7(3):623–645. doi: 10.1093/icb/7.3.623. [DOI] [PubMed] [Google Scholar]
  14. Suarez-Kurtz G., Reuben J. P., Brandt P. W., Grundfest H. Membrane calcium activation in excitation-contraction coupling. J Gen Physiol. 1972 Jun;59(6):676–688. doi: 10.1085/jgp.59.6.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Suarez-Kurtz G., Sorenson A. L. Inhibition by hypertonic solutions of Ca-dependent electrogenesis in single crab muscle fibers. J Gen Physiol. 1977 Oct;70(4):491–505. doi: 10.1085/jgp.70.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Takeda K. Permeability changes associated with the action potential in procaine-treated crayfish abdominal muscle fibers. J Gen Physiol. 1967 Mar;50(4):1049–1074. doi: 10.1085/jgp.50.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WERMAN R., GRUNDFEST H. Graded and all-or-none electrogenesis in arthropod muscle. II. The effects of alkali-earth and onium ions on lobster muscle fibers. J Gen Physiol. 1961 May;44:997–1027. doi: 10.1085/jgp.44.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weber A. The mechanism of the action of caffeine on sarcoplasmic reticulum. J Gen Physiol. 1968 Nov;52(5):760–772. doi: 10.1085/jgp.52.5.760. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES