Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jul;76(7):3068–3072. doi: 10.1073/pnas.76.7.3068

Separation and structure of the prosthetic group of the blue fluorescence protein from the bioluminescent bacterium Photobacterium phosphoreum

Prasad Koka 1, John Lee 1
PMCID: PMC383764  PMID: 16592674

Abstract

The highly fluorescent prosthetic group of the blue fluorescence protein purified from the bioluminescent bacterium Photobacterium phosphoreum has been dissociated and separated from its apoprotein by affinity chromatography on Cibacron Blue-Sepharose. It has been identified as 6,7-dimethyl-8-(1′-D-ribityl)lumazine by several methods of characterization, all of which gave results identical to those for an authentic sample. In neutral solution, absorption maxima are at 407, 275 (shoulder), and 256 nm, with a single fluorescence maximum at 491 nm. The proton magnetic resonance spectrum exhibits a singlet at 2.66 ppm corresponding to the methyl substituted at the 6 position of lumazine and a multiplet centered at 3.85 ppm corresponding to the C-2′-5′ protons of the ribityl group. A Raman spectrum was obtained by the technique of coherent anti-Stokes Raman scattering and the RF values by paper chromatography were determined in four solvent systems. The isolated compound was readily transformed into riboflavin by riboflavin synthetase. Fifty grams (dry weight) of P. phosphoreum contains at least 20 mg of this lumazine derivative, an amount comparable to that found in other microorganisms classified as riboflavin overproducers. The overproduction of this lumazine in this case apparently has to do with its function in the generation of bioluminescence.

Keywords: bioluminescence emitter; 6,7-dimethyl-8-ribityllumazine; overproducer

Full text

PDF
3068

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacher A., Mailänder B. Biosynthesis of riboflavin in Bacillus subtilis: function and genetic control of the riboflavin synthase complex. J Bacteriol. 1978 May;134(2):476–482. doi: 10.1128/jb.134.2.476-482.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beach R. L., Plaut G. W. Investigations of structures of substituted lumazines by deuterium exchange and nuclear magnetic resonance spectroscopy. Biochemistry. 1970 Feb 17;9(4):760–770. doi: 10.1021/bi00806a009. [DOI] [PubMed] [Google Scholar]
  3. Beach R. L., Plaut G. W. Stereospecificity of the enzymatic synthesis of the o-xylene ring of riboflavin. J Am Chem Soc. 1970 May 6;92(9):2913–2916. doi: 10.1021/ja00712a052. [DOI] [PubMed] [Google Scholar]
  4. Brown G. M. The biosynthesis of pteridines. Adv Enzymol Relat Areas Mol Biol. 1971;35:35–77. doi: 10.1002/9780470122808.ch2. [DOI] [PubMed] [Google Scholar]
  5. Demain A. L. Riboflavin oversynthesis. Annu Rev Microbiol. 1972;26:369–388. doi: 10.1146/annurev.mi.26.100172.002101. [DOI] [PubMed] [Google Scholar]
  6. Dutta P. K., Nestor J., Spiro T. G. Resonance coherent anti-Stokes Raman scattering (CARS) spectra of flavin adenine dinucleotide, riboflavin binding protein and glucose oxidase. Biochem Biophys Res Commun. 1978 Jul 14;83(1):209–216. doi: 10.1016/0006-291x(78)90418-7. [DOI] [PubMed] [Google Scholar]
  7. Gast R., Lee J. Isolation of the in vivo emitter in bacterial bioluminescence. Proc Natl Acad Sci U S A. 1978 Feb;75(2):833–837. doi: 10.1073/pnas.75.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gast R., Neering I. R., Lee J. Separation of a blue fluorescence protein from bacterial luciferase. Biochem Biophys Res Commun. 1978 Jan 13;80(1):14–21. doi: 10.1016/0006-291x(78)91097-5. [DOI] [PubMed] [Google Scholar]
  9. Harzer G., Rokos H., Otto M. K., Bacher A., Ghisla S. Biosynthesis of riboflavin. 6,7-Dimethyl-8-ribityllumazine 5'-phosphate is not a substrate for riboflavin synthase. Biochim Biophys Acta. 1978 Apr 19;540(1):48–54. doi: 10.1016/0304-4165(78)90433-6. [DOI] [PubMed] [Google Scholar]
  10. Lee J. Bacterial bioluminescence. Quantum yields and stoichiometry of the reactants reduced flavin mononucleotide, dodecanal, and oxygen, and of a product hydrogen peroxide. Biochemistry. 1972 Aug 29;11(18):3350–3359. doi: 10.1021/bi00768a007. [DOI] [PubMed] [Google Scholar]
  11. MALEY G. F., PLAUT G. W. The isolation, synthesis, and metabolic properties of 6, 7-dimethyl-8-ribityllumazine. J Biol Chem. 1959 Mar;234(3):641–647. [PubMed] [Google Scholar]
  12. Mayhew S. G., Whitfield C. D., Ghisla S., Schuman-Jörns M. Identification and properties of new flavins in electron-transferring flavoprotein from Peptostreptococcus elsdenii and pig-liver glycolate oxidase. Eur J Biochem. 1974 May 15;44(2):579–591. doi: 10.1111/j.1432-1033.1974.tb03515.x. [DOI] [PubMed] [Google Scholar]
  13. Metzger H., Rembold H., Gutensohn W. Catabolism of pteridine cofactors. 3. On the introduction of an oxygen function into position 6 of the pteridine ring. Biochim Biophys Acta. 1971 Jan 26;230(1):117–126. doi: 10.1016/0304-4165(71)90059-6. [DOI] [PubMed] [Google Scholar]
  14. Mitsuda H., Nakajima K., Yamada Y. Studies on the intermediates in the biosynthetic pathway of riboflavin. I. Identification of a green fluorescent compound, compound G1, accumulated in non-growing cells of Eremothecium ashbyii by the addition of dimeric diacetyl. J Nutr Sci Vitaminol (Tokyo) 1977;23(4):305–318. doi: 10.3177/jnsv.23.305. [DOI] [PubMed] [Google Scholar]
  15. PLAUT G. W. Studies on the nature of the enzymic conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin. J Biol Chem. 1963 Jun;238:2225–2243. [PubMed] [Google Scholar]
  16. Plaut G. W., Beach R. L., Aogaichi T. Studies on the mechanism of elimination of protons from the methyl groups of 6,7-dimethyl-8-ribityllumazine by riboflavin synthetase. Biochemistry. 1970 Feb 17;9(4):771–785. doi: 10.1021/bi00806a010. [DOI] [PubMed] [Google Scholar]
  17. Rembold H., Metzger H., Sudershan P., Guttensohn W. Catabolism of pteridine cofactors. I. Properties and metabolism in rat liver homogenates of tetrahydrobiopterin and tetrahydroneopterin. Biochim Biophys Acta. 1969 Jul 30;184(2):386–396. [PubMed] [Google Scholar]
  18. Rembold H., Simmersbach F. Catabolism of pteridine cofactors. II. A specific pterin deaminase in rat liver. Biochim Biophys Acta. 1969 Sep 2;184(3):589–596. doi: 10.1016/0304-4165(69)90273-6. [DOI] [PubMed] [Google Scholar]
  19. Schuman Jorns M., Schöllnhammer G., Hemmerich P. Intramolecular addition of the riboflavin side chain. Anion-catalyzed neutral photochemistry. Eur J Biochem. 1975 Sep 1;57(1):35–48. doi: 10.1111/j.1432-1033.1975.tb02274.x. [DOI] [PubMed] [Google Scholar]
  20. Schöllnhammer G., Hemmerich P. Nucleophilic addition at the photoexcited flavin cation: synthesis and properties of 6- and 9-hydroxy-flavocoenzyme chromophores. Eur J Biochem. 1974 May 15;44(2):561–577. doi: 10.1111/j.1432-1033.1974.tb03514.x. [DOI] [PubMed] [Google Scholar]
  21. Scola-Nagelschneider G., Hemmerich P. Synthesis, separation, identification and interconversion of riboflavin phosphates and their acetyl derivatives: a reinvestigation. Eur J Biochem. 1976 Jul 15;66(3):567–577. doi: 10.1111/j.1432-1033.1976.tb10583.x. [DOI] [PubMed] [Google Scholar]
  22. Song P. S., Koka P., Prézelin B. B., Haxo F. T. Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. Biochemistry. 1976 Oct 5;15(20):4422–4427. doi: 10.1021/bi00665a012. [DOI] [PubMed] [Google Scholar]
  23. Steenkamp D. J., McIntire W., Kenney W. C. Structure of the covalently bound coenzyme of trimethylamine dehydrogenase. Evidence for a 6-substituted flavin. J Biol Chem. 1978 Apr 25;253(8):2818–2824. [PubMed] [Google Scholar]
  24. Sun M., Moore T. A., Song P. S. Molecular luminescence studies of flavins. I. The excited states of flavins. J Am Chem Soc. 1972 Mar 8;94(5):1730–1740. doi: 10.1021/ja00760a052. [DOI] [PubMed] [Google Scholar]
  25. Suzuki A., Goto M. Isolation of D-erythro-neopterin 2':3'-cyclic phosphate from Photobacterium phosphoreum. Biochim Biophys Acta. 1973 Mar 30;304(1):222–224. doi: 10.1016/0304-4165(73)90132-3. [DOI] [PubMed] [Google Scholar]
  26. Travis J., Bowen J., Tewksbury D., Johnson D., Pannell R. Isolation of albumin from whole human plasma and fractionation of albumin-depleted plasma. Biochem J. 1976 Aug 1;157(2):301–306. doi: 10.1042/bj1570301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Walker W. H., Kearney E. B., Seng R. L., Singer T. P. The covalently-bound flavin of hepatic monoamine oxidase. 2. Identification and properties of cysteinyl riboflavin. Eur J Biochem. 1971 Dec;24(2):328–331. doi: 10.1111/j.1432-1033.1971.tb19690.x. [DOI] [PubMed] [Google Scholar]
  28. Wassink J. H., Mayhew S. G. Fluorescence titration with apoflavodoxin: a sensitive assay for riboflavin 5'-phosphate and flavin adenine dinucleotide in mixtures. Anal Biochem. 1975 Oct;68(2):609–616. doi: 10.1016/0003-2697(75)90656-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES